STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2008-09 & thereafter)

SUBJECT CODE : PH/MC/ME44

B.Sc. DEGREE EXAMINATION APRIL 2011 BRANCH III - PHYSICS FOURTH SEMESTER REG. No._____

COURSE	:	MAJOR – CORE	
PAPER	:	MECHANICS	
TIME	:	30 MINS.	MAX. MARKS : 30

TO BE ANSWERED IN THE QUESTION PAPER ITSELF

SECTION – A

ANSWER ALL QUESTIONS:

(30 x 1 = 30)

I CHOOSE THE CORRECT ANSWER:

1.				
	a) mw ² r	b) mw^2	c) mwr	d) mw^2/r
2.	Perfectly elastic collision has a) e = 0	s restitution b) $e = 1$	c) e > 1	d) e < 1
3.	For a SHM, the acceleration			1) -2
	a) displacement y	b) y^2	c) -y	d) $-y^2$
4.	The displacement y = a for a) circle	phase 0 to π and y = 0 b) line) for π to 2π . This repr c) square wave	
5.	Two masses m_1 and m_2 are s be	separated by a distance	e, the reduced mass of	the system will
	a) $\frac{m_1 m_2}{m_{1+} m_2}$	b) $m_{1+}m_2$	c) $m_{1-}m_2$	d) <i>m</i> ₁ <i>m</i> ₂
6.	The moment of inertia of a uperpendicular to length and passing through a) ML^2	-	L and mass M about an c) $\frac{ML^2}{3}$	axis d) $\frac{ML^2}{12}$
7	The moment of inertia of a r	ing about its diameter	will be	

7. The moment of inertia of a ring about its diameter will be a) MR^2 b) $\frac{MR^2}{2}$ c) $\frac{MR^2}{4}$ d) $\frac{MR^2}{8}$

..2..

PH/MC/ME44

8.	Moment of inertia of a solid a) $\frac{ML^2}{3}$	cylinder about its symbol $\frac{ML^2}{12}$	the true true true true true true true tru	R ²
9.	The period of oscillation of a a) its moment of inertia I	a bifilar pendulum is pr b) I ²	roportional to c) I^3	d) \sqrt{I}
10	b). The centre of gravity of a tetr a) $\frac{3h}{4}$ b) $\frac{h}{4}$	_	h d from the vertex wh $\frac{h}{2}$ d) $\frac{2h}{3}$	
11	 At critical velocity of a liquid a) k> 1000 	d, Reynold's number is b) k< 1000	s c) $k = 1$	d) k = 1000
12	2. A force F acting for a time t a) Ft	will have an impulse b) F/t	c) F ² t	d) t/F
13	 The unit of moment of inertia a) Kg/m 	a is b) Kg – m	c) Kg – m ²	d) Kg
14. For an elastic collision of 2 spheres, the velocity of approach of the spheres V_a and				
	velocity of separation V_s are 1 a) $V_a < V_s$	b) $V_a > V_s$	c) $V_s = 0$	d) $V_a = V_s$
15. A body of mass M and moment of inertia I has radius of gyration K equal to				
	a) $\sqrt{\frac{I}{M}}$	b) $\frac{I}{M}$	c) $\frac{M}{I}$	d) $\sqrt{\frac{M}{I}}$
Fill in the blanks:				
16. Coefficient of restitution is defined as				

/2/

17. A saw tooth wave can be mathematically represented as ------

18. Centre of mass of a system of particles can be represented as -----

- 19. Euler's equation of continuity is -----
- 20. D'Alembert's principle can be stated as ------

/3/

State whether TRUE or FALSE:

- 21. Oblique impact is a two dimensional impact.
- 22. The centres of suspension and oscillation are interchangeable.
- 23. Streamlined flow is possible only when the velocity of the liquid is above the critical velocity.
- 24. Critical velocity is large for highly viscous liquid.
- 25. Two colliding bodies will exchange their velocities after an elastic collision.

Answer briefly:

- 26. What is centrifugal force?
- 27. What are forced oscillations?
- 28. Explain periodic motion
- 29. State Fourier's theorem
- 30. What is gyroscope?

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2008-09 & thereafter)

SUBJECT CODE : PH/MC/ME44

B.Sc. DEGREE EXAMINATION APRIL 2011 BRANCH III - PHYSICS FOURTH SEMESTER

COURSE	:	MAJOR – CORE
PAPER	:	MECHANICS
TIME	:	2 ¹ / ₂ HOURS

MAX. MARKS: 70

SECTION – B

Answer any FIVE of the following:

 $(5 \times 5 = 25)$

- 1. A sphere of mass 1kg moving 1 m/s collides with another of mass 2kg at rest. If the collision is inelastic, calculate the loss in kinetic energy.
- 2. A stone tied to a string of length 1m executes circular motion as a conical pendulum. If the string subtends an angle 20° to the vertical, calculate the period of oscillation.
- 3. A stone of mass 1g executes SHM with angular velocity 3 rad/sec and amplitude 1cm. Calculate the energy of oscillation.
- 4. A circular disc of mass 1 kg and radius 10 cm rotates about an axis passing through the centre and perpendicular to the plane of the disc. Calculate the moment of inertia.
- 5. Calculate the moment of inertia of a spherical shell of mass 1 kg and radius 1m about its tangent.
- 6. Obtain the expression for centre of gravity of a solid cone.
- 7. Explain the principle of Atwood's machine.

SECTION – C

Answer any THREE of the following:

- 8. For direct impact of two spheres, obtain expressions for the final velocities of the two spheres.
- 9. Explain free, damped and forced vibrations and the condition for resonance
- 10. Derive the expression for moment of inertia of a solid sphere about its diameter
- 11. Obtain expressions for centres of gravity of solid and hollow hemispheres.
- 12. Obtain Lagrange's equation and explain its application to a simple pendulum.

$(3 \times 15 = 45)$