STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2008 – 09 & thereafter)

SUBJECT CODE : MT/RC/TG105

M.Phil. DEGREE EXAMINATION, JANUARY 2011 MATHEMATICS FIRST SEMESTER

COURSE	:	CORE	
PAPER	:	TOPOLOGY AND GEOMETRY	
TIME	:	3 HOURS	MAX. MARKS: 100

Answer any five questions choosing at least two questions from each section. Each question carries 20 marks:

SECTION - A

- 1. a) When do you say that a topological space is contractible? Show that a space *X* is contractible if and only if *X* is of the same homotopy type as a single point.
 - b) Construct a connected space which is not arcwise connected.
 - c) Let X be an arcwise connected space and $x_0, x_1 \in X$. Show that there exists a group isomorphism of $\pi_1(X, x_0)$ onto $\pi_1(X, x_1)$. (6+7+7)
- 2. a) Let (\tilde{X}, p) be a covering space of X and $x \in X, \tilde{x} \in \tilde{X}$ with $p(\tilde{x}) = x$. Show that there is a natural one-to-one correspondence between $p^{-1}(\{x\})$ and the coset space $\pi_1(X, x)/p_*\pi_1(\tilde{X}, \tilde{x})$.
 - b) Define deck transformation. Let (\tilde{X}, p) be a regular covering space of a locally simply connected space X. Show that the group $\mathcal{G}(\tilde{X}, p)$ of deck transformations is isomorphic to the quotient group $\pi_1(X, p(\tilde{x})) / p_*(\pi_1(\tilde{X}, \tilde{x}))$. (10+10)
- a) Let s be a K-simplex and K[†] be a subdivision of s^{k-1}. Let v ∈ (s). Show that (v, [K[†]]) is in general position. Furthermore show that v * [K[†]] is the point set of a complex K defined by K = K[†] U_{s[†]∈K[†]}(s[†], v) and K is a subdivision of s.
 - b) Let K be a simplicial complex. Let $K^{(1)} = \{(b(s_0), \dots, b(s_k)): s_0 < s_1 < \dots < s_k; s_0, s_1, \dots, s_k \in K\}.$ Show that $K^{(1)} \text{ is a subdivision of K and for each } s_0, s_1, \dots, s_r \in K \text{ with } s_0 < s_1 < \dots < s_r,$ $(b(s_0), \dots, b(s_r)) \subset (s_r).$ (10+10)
- 4. a) Let *K* be a simplicial complex of dimension *m*. Show that $\lim_{n\to\infty} K^{(n)} = 0$.
 - b) Let K be a simplicial complex. For v, a vertex of K, show that St(v) is an open set in [K] containing v, v is the only vertex of K which lies in St(v) and $\{St(v)\}_{v \in K^o}$ is an open covering of [K].
 - c) Let $f:[K] \to [L]$ be continuous. Show that for $\varepsilon > 0$, there exists a subdivision K_n of K and L_m of L and a simplicial approximation $\phi: K_n \to L_m$ of f such that $d(f, \phi) < \varepsilon$. (6+4+10)

SECTION – B

- 5. a) Let *X*, *Y* be smooth manifolds and $\Psi: X \to Y$ be smooth maps. Define the differential $d\Psi$ of Ψ at $x \in X$. Show that $d\Psi(v) = \sum_{i=1}^{m} v(y_i \circ \Psi) \frac{\partial}{\partial y_i}$.
 - b) Let *X* and *Y* be smooth and let $\Psi : X \to Y$ be a smooth map. Show that $d \circ \Psi^* = \Psi^* \circ d$.
 - c) State and prove Poincare's lemma.

(5+5+10)

- 6. Let X be a smooth manifold. Show that there exists a unique linear map $d: C^{\infty}(X, \mathcal{G}(X)) \to C^{\infty}(X, \mathcal{G}(X))$ such that
 - (i) $d: C^{\infty}(X, \Lambda^{k}(X)) \to C^{\infty}(X, \Lambda^{k+1}(X))$ (ii) d(f) = df for $f \in C^{\infty}(X, \Lambda^{0}(X))$ (iii) if $\mu \in C^{\infty}(X, \Lambda^{k}(X))$ and $\tau \in C^{\infty}(X, \mathcal{G}(X))$ then $d(\mu \wedge \tau) = (d\mu) \wedge \tau + (-1)^{k} \mu \wedge (d\tau)$ and (iv) $d^{2} = 0$.
- 7. (a) Show that the maps $C_{l-1}(K, \mathcal{G}) \xleftarrow{\partial} C_l(K, \mathcal{G}) \xleftarrow{\partial} C_{l+1}(K, \mathcal{G})$ satisfy $\partial^2 = 0$. (b) If K is the 1 – skeleton of 2 – simplex, compute $H_1(K, \mathcal{J})$ and $H_1(K, \mathcal{J})$ (10+10)
- 8. a) Let *K* be a simplicial complex. Define Betti number and Euler characteristic of *K*. Find an expression for the Euler characteristic of *K*.

b) show that $\partial^* \varphi_{\langle v_0, v_1, \dots, v_l \rangle} = \sum_{\nu}' \varphi_{\langle v, v_0, \dots, v_l \rangle}$ where \sum_{ν}' denotes the sum over all vertices $\nu \in K$ such that $(\nu, \nu_0, \dots, \nu_l)$ is an (l+1) simplex of K. (10+10)