STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2008–09 & thereafter)

SUBJECT CODE : MT/RC/AA105

MAX. MARKS: 100

(5+5+15)

M.Phil. DEGREE EXAMINATION, JANUARY 2011 MATHEMATICS FIRST SEMESTER

COURSE	:	CORE
PAPER	:	ALGEBRA AND ANALYSIS
TIME	:	3 HOURS

ANSWER FOUR QUESTIONS WITHOUT OMITTING ANY SECTION:

SECTION -A

- 1. a) Prove that in a distributive lattice *L*, $(x \land y) \lor (y \land z) \lor (z \land x) = (x \lor y) \land (y \lor z) \land (z \lor x)$
 - b) Show that the normal subgroups of any group G form a modular lattice.
 - c) State and prove Jordan Hölder theorem.
- 2. a) Define a category and give two examples.
 - b) Define the following
 - (i) Injection functor
 - (ii) Forgetful functors
 - (iii) A contravarient functor from R-modules to mod-R.
 - c) Explain equivalence of categories with example. (5+10+10)
- 3. a) For an R-module *M* show that the following are equivalent.
 - (i) *M* is artinian.
 - (ii) Every quotient module of *M* is finitely cogenerated.
 - (iii) Every nonempty set *S* of submodules of *M* has a minimal element.
 - b) State and prove Wedderburn-Artin theorem. (10+15)
- 4. a) Define Tensor product of (i) Modules (ii) Homomorphisms
 - b) Let M, N and P be R-modules over a commutative ring R. Then show that
 - (i) $M \otimes_R N \simeq N \otimes_R M$ as R-modules.
 - (ii) $(M \otimes_R N) \otimes_R P \simeq M \otimes_R (N \otimes_R P)$ as R-modules.
 - c) Let *R* be a Commutative Ring with unity. Let *A*, *B* be ideals in *R*. Then show that $\frac{R}{A} \otimes_{R} \frac{R}{B} \simeq \frac{R}{A+B} \text{ as R-algebras.}$ (5+10+10)

SECTION – B

- 5. a) Define Lebesgue integral of a measurable function.
 - b) State and prove Lebesgue's Dominated convergence theorem.
 - c) If $f: X \to [0, \infty]$ is measurable, $E \in \mathfrak{M}$ and $\int_E f d\mu = 0$ then show that f = 0 a.e. on *E*. (5+15+5)
- 6. a) State and prove Riesz representation theorem.
 - b) For a positive measure μ define $L^2(\mu)$, $1 \le p \le \infty$ and prove that it is a complete metric space. (10+15)
- 7. a) State and prove Jenson's inequality and hence deduce that $y_1^{\alpha_1} y_2^{\alpha_2} \dots y_n^{\alpha_n} \le \alpha_1 y_1 + \alpha_2 y_2 + \dots + \alpha_n y_n$ where $\sum \alpha_i = 1$, $\alpha_i > 0$.
 - b) Let μ be a positive measure on a σ-algebra M. Then prove the following
 (i) μ(A_n) → μ(A) as n → ∞ if A = ∪_{n=1}[∞] A_n, A_n ∈ M and A₁ ⊂ A₂ ⊂ A₃
 (ii) μ(A_n) → μ(A) as n → ∞ if A = ∩_{n=1}[∞] A_n, A_n ∈ M and A₁ ⊃ A₂ ⊃ A₃ and μ(A₁) is finite. (10+15)
- 8. a) Let $f \in L^1$ and α, λ be real numbers then prove the following
 - (i) If $g(x) = f(x)e^{i\alpha x}$, then $\hat{g}(t) = \hat{f}(t \alpha)$
 - (ii) If $g(x) = f(x \alpha)$, then $\hat{g}(t) = \hat{f}(t)e^{-i\alpha t}$
 - (iii) IF $g \in L^1$ and h = f * g, then $\hat{h}(t) = \hat{f}(t)\hat{g}(t)$

b) State and prove Plancherel theorem.