STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2009-10 & thereafter)

SUBJECT CODE : MT/PC/MI24

M. Sc. DEGREE EXAMINATION, APRIL 2011 BRANCH I – MATHEMATICS SECOND SEMESTER

COURSE: COREPAPER: MEASURE THEORY AND INTEGRATIONTIME: 3 HOURSMAX. MARKS : 100

SECTION – A

ANSWER ANY FIVE QUESTIONS:

(5 X 8 = 40)

- 1. If $m^*(E) = 0$, then prove that E is measurable.
- 2. Show that for any set A and any $\varepsilon > 0$, there exists an open set O such that A is contained in $O \& m^*(O) \le m^*(A) + \varepsilon$.
- 3. State and prove Labesgue Dominated Convergence Theorem .
- 4. Prove that the measurability of f is equivalent to the following:
 - i) for all α , $\{f(x) \ge \alpha\} \in \mathbb{S}$,
 - ii) for all α , {*x*:*f*(*x*) < α } $\in \mathbb{S}$,
 - iii) for all α , $\{x: f(x) \le \alpha\} \in \mathbb{S}$, where \mathbb{S} is a σ algebra.
- 5. Prove that a countable union of sets positive with respect to a signed measure v is a positive set.
- 6. Let μ be a signed measure on [[X, S]] and let v be a finite-value signed measure on [[X, S]] such that v << μ. Then prove that given ε >0 there exists δ >0 such that |v|(E) < ε Whenever |μ|(E) < δ.
- 7. Prove that the class of elementary sets E is an algebra.

SECTION – B

(3 X20 = 60)

- ANSWER ANY THREE QUESTIONS:
 - 8. Suppose that f is any extended real-valued function which for every x and y satisfies f(x) + f(y) = f(x + y)
 i) Show that f is either everywhere finite or everywhere infinite.
 ii) Show that if f is measurable and finite, then f(x) = xf(1).

- 9. State and prove Fatou's Lemma.
- 10. If μ is a measure on a σ ring \mathbb{S} , then prove that the class $\overline{\mathbb{S}}$ of sets of the form $E\Delta N$ for any sets E,N such that $E \in \mathbb{S}$ while N is contained in some set in \mathbb{S} of zero Measure, is a σ ring, and the set function $\overline{\mu}$ defined by $\overline{\mu}(E\Delta N) = \mu(E)$ is a complete measure on $\overline{\mathbb{S}}$.
- 11. Let v be a signed measure on [[X, S]]. Let $E \in S$ and v(E) > 0. Then prove that there exists A, a set positive with respect to v, such that A is contained in E, and v(A)>0.
- 12. Let $[[X, S, \mu]]$ and $[[Y, \mathfrak{T}, v]]$ be σ -finite measure spaces. For $V \in S \times \mathfrak{T}$ write $\phi(x) = v (V_x) \& \psi(y) = \mu(V^y)$, for each $x \in X$, $y \in Y$. prove that ϕ is S measurable, ψ is \mathfrak{T} -measurable and $\int_X \phi d\mu = \int_Y \psi dv$.

.....