STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

(For candidates admitted from the academic year 2009-10)
SUBJECT CODE: MT/PC/FA44
M. Sc. DEGREE EXAMINATION, APRIL 2011

BRANCH I - MATHEMATICS
FOURTH SEMESTER

COURSE : CORE
PAPER : FUNCTIONAL ANALYSIS
TIME : 3 HOURS

MAX. MARKS : 100

SECTION - A

ANSWER ANY FIVE QUESTIONS:

1. If N is a normed linear space and x_{0} is a non-zero vector in N, then prove that there exists a functional f_{0} in N^{*} such that $f_{0}\left(x_{0}\right)=\left\|x_{0}\right\|$ and $\left\|f_{0}\right\|=1$.
2. If M is a closed linear subspace of a Hilbert Space H, then prove that $H=M \oplus M^{\perp}$.
3. State and prove Bessel's inequality.
4. Prove that every Hilbert Space is reflexive.
5. Prove that two matrices in A_{n} are similar if and only if they are the matrices of a single operator on H relative to different bases.
6. Prove: If $P_{1}, P_{2}, \ldots, P_{n}$ are the projections on closed linear subspaces $M_{1}, M_{2}, \ldots, M_{n}$ of H, then $P=P_{1}, P_{2}, \ldots, P_{n}$ is a projection \Leftrightarrow the P_{i} 's are pairwise orthogonal and P is the projection on $M=M_{1}, M_{2}, \ldots, M_{n}$.
7. With usual notations show that Z is a subset of S and the boundary of S is a subset of Z.

SECTION - B

ANSWER ANY THREE QUESTIONS:

$(3 \times 20=60)$
8. a) State and prove Minkowski's inequality.
b) Let M be a linear subspace of a normed linear space N and let f be a functional defined on M. Let $x_{0} \notin M$ and $M_{0}=M+\left[x_{0}\right]$. Prove that f can be extended to a functional f_{0} defined on M_{0} such that $\left\|f_{0}\right\|=\|f\|$.
9. a) State and prove parallelogram law in a Hilbert space.
b) Prove that a closed convex subset C of a Hilbert space H contains a unique vector of smallest norm.
10. a) If T is an operator on a Hilbert Space H for which $(T x, x)=0$ for all $x \in H$, then prove that $T=0$.
b) If T is an operator on a Hilbert Space H, then prove that T is normal if and only if its real and imaginary parts commute.
11. State and prove the Spectral Theorem.
12. a) Prove that $\sigma(x)$ is a non empty compact subset of the complex plane.
b) Prove $r(x)=\lim \left\|x_{n}\right\|^{\frac{1}{n}}, x$ in a general Banach Algebra A.

