STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2009–10)

SUBJECT CODE: MT/PC/FA44

M. Sc. DEGREE EXAMINATION, APRIL 2011 BRANCH I – MATHEMATICS FOURTH SEMESTER

COURSE: COREPAPER: FUNCTIONAL ANALYSISTIME: 3 HOURS

MAX. MARKS : 100

SECTION – A

ANSWER ANY FIVE QUESTIONS:

- 1. If N is a normed linear space and x_0 is a non-zero vector in N, then prove that there exists a functional f_0 in N^{*} such that $f_0(x_0) = ||x_0||$ and $||f_0|| = 1$.
- 2. If *M* is a closed linear subspace of a Hilbert Space *H*, then prove that $H = M \bigoplus M^{\perp}$.
- 3. State and prove Bessel's inequality.
- 4. Prove that every Hilbert Space is reflexive.
- 5. Prove that two matrices in A_n are similar if and only if they are the matrices of a single operator on *H* relative to different bases.
- 6. Prove: If P₁, P₂, ..., P_n are the projections on closed linear subspaces M₁, M₂, ..., M_n of H, then P = P₁, P₂, ..., P_n is a projection ⇔ the P_i's are pairwise orthogonal and P is the projection on M = M₁, M₂, ..., M_n.
- 7. With usual notations show that Z is a subset of S and the boundary of S is a subset of Z.

SECTION – B

ANSWER ANY THREE QUESTIONS:

- 8. a) State and prove Minkowski's inequality.
 - b) Let *M* be a linear subspace of a normed linear space *N* and let *f* be a functional defined on *M*. Let x₀ ∉ *M* and M₀ = M + [x₀]. Prove that *f* can be extended to a functional f₀ defined on M₀ such that ||f₀|| = ||f||.

(5 X 8 = 40)

(3 X 20 = 60)

- 9. a) State and prove parallelogram law in a Hilbert space.
 - b) Prove that a closed convex subset *C* of a Hilbert space *H* contains a unique vector of smallest norm.
- 10. a) If *T* is an operator on a Hilbert Space *H* for which (Tx, x) = 0 for all $x \in H$, then prove that T = 0.
 - b) If *T* is an operator on a Hilbert Space *H*, then prove that *T* is normal if and only if its real and imaginary parts commute.
- 11. State and prove the Spectral Theorem.
- 12. a) Prove that $\sigma(x)$ is a non empty compact subset of the complex plane.
 - b) Prove $r(x) = \lim ||x_n||^{\frac{1}{n}}$, x in a general Banach Algebra A.
