Bulletin of Pure and Applied Sciences Volume 30 E (Math & Stat.) Issue (No.2)2011: P. 145-152 www.bpas.in

PERFECT INTUITIONISTIC FUZZY GRAPHS

¹A. Nagoor Gani and ²S. Shajitha Begum P.G. and Research Department of Mathematics, Jamal Mohamed College,

Tiruchirappalli - 620 020, India

E-mail: ¹ganijmc@yahoo.co.in and ²shajithasn@rediffmail.com

Received on 29 June 2011 : Accepted on 18 October 2011

ABSTRACT

In this paper, μ -perfect, υ -perfect, complete μ -perfect and complete υ -perfect intuitionistic fuzzy graphs are defined. The radius, diameter, status, median and connectivity of perfect intuitionistic fuzzy graphs are discussed.

Keywords: Perfect intuitionistic Fuzzy graph, Distance, Eccentricity, Status and median.

1. INTRODUCTION

The basic idea of a fuzzy relation was defined by Zadeh [10]. Rosenfeld [9] considered fuzzy relations on fuzzy sets and developed the structure of fuzzy graphs, obtaining analogs of several graph theoretical concepts. Bhattacharya [2] obtained other graph theoretic results concerning center and eccentricity. A.Nagoor Gani and M. Basheer Ahamed [4] defined perfect fuzzy graph and complete perfect fuzzy graph and discussed some of its properties.

K.T. Atanassov [1] introduced the concept of Intuitionistic Fuzzy Graph (IFG) in 1994. Research on the theory of intuitionistic fuzzy sets has a vast opening in various applications. R.Parvathy and M.G.Karunambigai [8] gave a new definition for IFG and analyzed its components. A. Nagoor Gani and S. Shajitha Begum [7] defined status and median in IFGs. In this paper, we introduce the notion of μ -perfect, υ -perfect, complete μ -perfect and complete υ -perfect intuitionistic fuzzy graphs and some of its properties are analysed.

2. PRELIMINARIES

2.1. Definition: [8]

An Intuitionistic fuzzy graph is of the form $G = \langle V, E \rangle$ where

- i) $V = \{v_1, v_2, ..., v_n\}$ such that $\mu_1: V \rightarrow [0, 1]$ and $\upsilon_1: V \rightarrow [0, 1]$ denote the degree of membership and nonmembership of the element $v_i \in V$, respectively, and $0 \leq \mu_1(v_i) + \upsilon_1(v_i) \leq 1$ for every $v_i \in V$, (i = 1, 2, ..., n),
- ii) $E \subseteq V \times V$ where $\mu_2: V \times V \rightarrow [0,1]$ and $\upsilon_2: V \times V \rightarrow [0,1]$ are such that $\mu_2 (v_i, v_j) \leq min [\mu_1 (v_i), \mu_1 (v_j)], \quad \upsilon_2 (v_i, v_j) \leq max [\upsilon_1 (v_i), \upsilon_1 (v_j)]$ and $0 \leq \mu_2 (v_i, v_j) + \upsilon_2 (v_i, v_j) \leq 1$ for every $(v_i v_j) \in E$, $(i, j = 1, 2, \dots, n)$.

2.2. Definition[8]: An IFG G = <V,E> is a complete IFG, if μ_{2ij} = min (μ_{1i} , μ_{1j}) and υ_{2ij} =max (υ_{1i} , υ_{1j}) for all $v_i \in V$.

2.3. Definition[6]: Let $G = \langle V, E \rangle$ be an IFG. Then the order of G is defined to be $O(G) = (O_{\mu}(G), O_{\upsilon}(G))$ where $O_{\mu}(G) = \sum_{v \in V} \mu_1(v)$ and $O_{\upsilon}(G) = \sum_{v \in V} \upsilon_1(v)$.

2.4. Definition[6]: The size of G is defined to be $S(G) = (S_{\mu}(G), S_{\nu}(G))$ where $S_{\mu}(G) = \Sigma_{u \neq v} \mu_2(u, v)$ and $S_{\nu}(G) = \Sigma_{u \neq v} \upsilon_2(u, v)$.

2.5. Definition[6]: Let G = < V, E > be an IFG. The neighbourhood of any vertex v is defined as N(v)=(N_µ(v),N_v(v)) where N_µ(v)={w∈V; μ_2 (v, w) = μ_1 (v) $\land \mu_1$ (w)}and N_v(v)={w∈V; v_2 (v,w) = v_1 (v) V v_1 (w)} and N[v] = N(v) U {v} is called the closed neighbourhood of v.

2.6. Definition[7]: The μ -distance $\delta_{\mu}(v, w)$ is defined to be the minimum of the μ -lengths of all the paths joining v and w. (i.e.) $\delta_{\mu}(v, w) = \Lambda \{L_{\mu}(P) : P \text{ is a path between v and } w\}$.

The υ -distance $\delta_{\upsilon}(v, w)$ is defined to be the maximum of the υ -lengths of all the paths joining v and w. (i.e.) $\delta_{\upsilon}(v, w) = V \{L_{\upsilon}(P) : P \text{ is a path between v and } w\}$.

2.7. Definition[7]: Let G = < V, E > be an IFG. The eccentricity of a node v is defined as $e(v) = (e_{\mu}(v), e_{\nu}(v))$ where the μ -eccentricity $e_{\mu}(v)$ is the maximum of all the μ -distances $\delta_{\mu}(v, w)$ for every $w \in V$. (i.e.) $e_{\mu}(v) = V \{ \delta_{\mu}(v, w), w \in V \}$ and the γ -eccentricity $e_{\nu}(v)$ is the maximum of all the ν -distances $\delta_{\nu}(v, w)$ for every $w \in V$. (i.e.) $e_{\nu}(v) = V \{ \delta_{\nu}(v, w), w \in V \}$ and the $(i.e.) e_{\nu}(v) = V \{ \delta_{\nu}(v, w), w \in V \}$.

2.8. Definition[7]: A radius of an IFG is $r(G) = (r_{\mu}(G), r_{\nu}(G))$ where the μ -radius $r_{\mu}(G)$ is the minimum of all the μ -eccentrities of the vertices of G and ν -radius $r_{\nu}(G)$ is the minimum of all the ν -eccentricities of the vertices of G.

2.9. Definition[7]: The diameter $d(G) = (d_{\mu}(G), d_{\nu}(G))$ where μ -diameter $d_{\mu}(G)$ is the maximum of all the μ -eccentricities of the vertices of G and $d_{\nu}(G)$ is the maximum of all the ν -eccentricities of the vertices of G.

2.10. Definition[7]:The μ -status $s_{\mu}(v)$ of G is defined to be the sum of all the μ -distances $\delta_{\mu}(v, w)$ for every $w \in V$. i.e. $s_{\mu}(v) = \Sigma \delta_{\mu}(v, w)$, $w \in V$

The v-status $s_v(v)$ of G is defined to be the sum of all the v-distances $\delta_v(v, w)$ for every $w \in V$. i.e. $s_v(v) = \Sigma \delta_v(v, w)$, $w \in V$

2.11. Definition[7]:The Median is defined as $M(G) = (M_{\mu}(G), M_{\upsilon}(G))$ where $M_{\mu}(G)$ is the set of nodes with minimum μ status and $M_{\upsilon}(G)$ is the set of nodes with minimum υ status.

2.12. Definition[6]: The closed neighbourhood degree of a vertex 'v' is defined as $d_{N}[v] = (d_{N\mu}[v], d_{N\nu}[v]) \text{ where } d_{N\mu}[v] = \sum_{w \in N(v)} \mu_{1}(w) + \mu_{1}(v) \text{ and } d_{N\nu}[v] = \sum_{w \in N(v)} \upsilon_{1}(w) + \upsilon_{1}(v).$

2.13. Definition[6]: An intuitionistic fuzzy graph $G = \langle V, E \rangle$ is said to be regular, if all the vertices have the same closed neighbourhood degree.

2.14 Definition[5]: If $v_i, v_j \in V \subseteq G$, then the μ -strength of connectedness between v_i and v_j is $CONNG_{\mu}(v_i, v_j) = \sup \{ \mu_2^k (v_i, v_j) / k = 1, 2, ..., n) \}$ and μ -strength of connectedness between v_i and v_j is $CONNG_{\nu}(v_i, v_j) = \inf \{ v_2^k (v_i, v_j) / k = 1, 2, ..., n) \}$.

3. PERFECT INTUITIONISTIC FUZZY GRAPHS

3.1. Definition: Let G = < V, E > be an IFG. A vertex is called a μ_1 -perfect intuitionistic fuzzy vertex if μ_1 (v) = 1 and a υ_1 -perfect intuitionistic fuzzy vertex if $\upsilon_1(v) = 1$ for some $v \in V$.

An edge (v, w) is called a μ_1 -perfect intuitionistic fuzzy edge if $\mu_2(v, w) = 1$ and a υ_1 -perfect intuitionistic fuzzy edge if $\upsilon_2(v, w) = 1$ for some $(v, w) \in E$.

3.2 Example:

3.3 Definition: An IFG G = < V, E > is called a μ_1 -perfect intuitionistic fuzzy graph if μ_1 (v) = 1 for all v \in V and a υ_1 -perfect intuitionistic fuzzy graph if $\upsilon_1(v) = 1$ for all v \in V.

3.4 Example:

Fig. 2. µ1 - perfect IFG

3.5 Definition: An IFG G = < V, E > is called a μ_2 -perfect intuitionistic fuzzy graph if μ_2 (v, w) = 1 for all (v, w) \in E and υ_2 - perfect intuitionistic fuzzy graph if υ_2 (v, w) = 1 for all (v, w) \in E.

3.6 Example:

A. Nagoor Gani and S. Shajitha Begum

3.7 Remark:

i. Every μ_2 -perfect intuitionistic fuzzy graph is μ_1 -perfect intuitionistic fuzzy graph, converse need not be true.

For example, the graph given in Fig.4 is μ_2 -perfect intuitionistic fuzzy graph and μ_1 -perfect intuitionistic fuzzy graph whereas the graph given in Fig.2 is μ_1 -perfect intuitionistic fuzzy graph but not μ_2 -perfect intuitionistic fuzzy graph.

ii. Every v_2 -perfect intuitionistic fuzzy graph is v_1 -perfect intuitionistic fuzzy graph, converse need not be true.

For example, the graph given in Fig.5 is v_2 -perfect intuitionistic fuzzy graph and v_1 -perfect intuitionistic fuzzy graph whereas the graph given in Fig.3 is v_1 -perfect intuitionistic fuzzy graph but not v_2 -perfect intuitionistic fuzzy graph.

3.8 Definition: An IFG G = < V, E > is called a complete μ_2 -perfect intuitionistic fuzzy graph if $\mu_2(v, w) = 1$ for all $(v, w) \in V$ and a complete υ_2 - perfect intuitionistic fuzzy graph if $\upsilon_2(v, w) = 1$ for all $(v, w) \in V$.

Fig. 6. Complete μ_2 - perfect IFG

3.10 Remark:

i. Every complete μ_2 -perfect intuitionistic fuzzy graph is μ_2 -perfect intuitionistic fuzzy graph, converse need not be true.

For example, the graph given in Fig.6 is complete μ_2 -perfect intuitionistic fuzzy graph and μ_2 -perfect intuitionistic fuzzy graph whereas the graph given in Fig.4 is μ_2 -perfect intuitionistic fuzzy graph but not complete μ_2 -perfect intuitionistic fuzzy graph.

ii. Every complete υ₂-perfect intuitionistic fuzzy graph is υ₂-perfect intuitionistic fuzzy graph, converse need not be true.
For example, the graph given in Fig.7 is complete υ₂-perfect intuitionistic

fuzzy graph and v_2 -perfect intuitionistic fuzzy graph whereas the graph given in Fig.5 is v_2 -perfect intuitionistic fuzzy graph but not complete v_2 -perfect intuitionistic fuzzy graph but not complete v_2 -perfect intuitionistic fuzzy graph.

3.11 Definition: An IFG G = < V, E > is called a μ -perfect intuitionistic fuzzy graph if it has a μ_2 -perfect intuitionistic fuzzy graph and a ν -perfect intuitionistic fuzzy graph if it has a ν_2 -perfect intuitionistic fuzzy graph.

PERFECT INTUITIONISTIC FUZZY GRAPHS

3.12 Definition: An IFG G = < V, E > is called complete μ -perfect intuitionistic fuzzy graph if it has a μ_2 -perfect intuitionistic fuzzy graph and complete ν -perfect intuitionistic fuzzy graph if it has a ν_2 -perfect intuitionistic fuzzy graph.

3.13 Remark:

Every complete μ -perfect intuitionistic fuzzy graph is a μ -perfect intuitionistic fuzzy graph, but not conversely true. $v_1(1,0)$

Fig. 9: µ - perfect IFG not Complete µ - perfect IFG

Every complete υ -perfect intuitionistic fuzzy graph is a υ -perfect intuitionistic fuzzy graph, but not conversely true.

4. STATUS IN PERFECT IFGS

4.1 Theorem:The radius of a complete μ -perfect intuitionistic fuzzy graph with n vertices is always (1, 0) and complete υ -perfect intuitionistic fuzzy graph with n vertices is always (0, n-1).

Proof:

Let G = <V,E> be a complete μ -perfect intuitionistic fuzzy graph with n vertices. The eccentricity $e(v) = (e_{\mu}(v), e_{\nu}(v))$ of each vertex is always (1, 0). We know that the radius is minimum eccentricity among the vertices. Hence the radius of a complete μ -perfect intuitionistic fuzzy graph is always (1,0).

Let $G = \langle V, E \rangle$ be a complete v-perfect intuitionistic fuzzy graph with n vertices. The eccentricity $e(v) = (e_{\mu}(v), e_{\nu}(v))$ of each vertex is always (0, n-1). We know that the radius is minimum eccentricity among the vertices. Hence the radius of a complete v-perfect intuitionistic fuzzy graph is always (0, n-1).

A. Nagoor Gani and S. Shajitha Begum

4.2 Corollary: The diameter of a complete μ -perfect intuitionistic fuzzy graph with n vertices is (1, 0) and complete ν -perfect intuitionistic fuzzy graph with n vertices is (0, n-1).

4.3 Example:

Consider the μ -perfect intuitionistic fuzzy graph in Fig. 6. $e_{\mu}(v_1)=e_{\mu}(v_2)=e_{\mu}(v_3)=e_{\mu}(v_4)=(1,\,0).$ Thus $r_{\mu}(G)=(1,0)$ and $d_{\mu}(G)=(1,\,0).$ Consider the υ -perfect intuitionistic fuzzy graph in Fig. 7. $e_{\upsilon}(v_1)=e_{\upsilon}(v_2)=e_{\upsilon}(v_3)=e_{\upsilon}(v_4)=(0,\,3).$ Thus $r_{\upsilon}(G)=(0,\,3)$ and $d_{\upsilon}(G)=(0,\,3).$

4.4 Theorem: Every complete μ -perfect intuitionistic fuzzy graph is self μ -centered and every complete υ -perfect intuitionistic fuzzy graph is self υ -centered.

Proof:

Let G = <V,E> be a complete μ -perfect intuitionistic fuzzy graph with n vertices. The eccentricity $e(v) = (e_{\mu}(v), e_{\nu}(v))$ of each vertex is always (1, 0). A connected IFG is self μ -centered if each node has same μ -eccentricity. Hence a complete μ -perfect intuitionistic fuzzy graph is self μ -centered.

Let G = <V,E> be a complete υ -perfect intuitionistic fuzzy graph with n vertices. The eccentricity $e(v) = (e_{\mu}(v), e_{\upsilon}(v))$ of each vertex is always (0, n-1). A connected IFG is self υ -centered if each node has same υ -eccentricity. Hence a complete υ -perfect intuitionistic fuzzy graph is self υ -centered.

4.5 Theorem: The status of complete μ -perfect intuitionistic fuzzy graph is (O(G) - 1, 0) and complete υ -perfect intuitionistic fuzzy graph is (0, (n-1)(O(G) - 1)) where n is the number of vertices.

Proof:

Let G be a complete μ -perfect intuitionistic fuzzy graph with n vertices. Then we have the distance $\delta(v, w) = (\delta_{\mu}(v, w), \delta_{\nu}(v, w)) = (1, 0)$ for any $v, w \in V$. The status of each vertex is sum of the distance between that vertex and all other vertices. Thus the status of each vertex is (O(G) - 1, 0).

Let G be a complete υ -perfect intuitionistic fuzzy graph with n vertices. Then we have the distance $\delta(v,w) = (\delta_{\mu}(v,w), \delta_{\upsilon}(v,w)) = (0, n-1)$ for any $v,w \in V$. The status of each vertex is sum of the distance between that vertex and all other vertices.

Thus the status of each vertex is (0, (n-1)(O(G) - 1)).

4.6 Corollary: The median of each vertex of a complete μ -perfect intuitionistic fuzzy graph is (O(G) – 1, 0) and a complete ν -perfect intuitionistic fuzzy graph is (0, (n-1)(O(G) – 1)) where n is the number of vertices.

4.7 Remark: In a complete μ -perfect intuitionistic fuzzy graph and complete ν -perfect intuitionistic fuzzy graph, all vertices are median vertices.

4.8. Example:

Consider the complete μ -perfect intuitionistic fuzzy graph in Fig.8. Here n = 3 and O(G) = (3, 0).

 $s(v_1) = s(v_2) = s(v_3) = (2, 0)$. Hence s(G) = (2, 0). Also the median M(G) = (2, 0) and Median vertex set = { v_1, v_2, v_3 }.

PERFECT INTUITIONISTIC FUZZY GRAPHS

Consider the complete υ -perfect intuitionistic fuzzy graph in Fig. 10. Here n = 3 and O(G) = (3, 0).

Here $s(v_1) = s(v_2) = s(v_3) = (0, 4)$. Hence s(G) = (0, 4). Also the median M(G) = (0, 4) and Median vertex set = { v_1, v_2, v_3 }.

4.9 Theorem: The total status of a complete μ -perfect intuitionistic fuzzy graph is (n[O(G) - 1], 0) and a complete υ -perfect intuitionistic fuzzy graph is (0, n(n-1)(O(G) - 1)) where n is the number of vertices.

Proof:

Let G be a complete μ -perfect intuitionistic fuzzy graph with n vertices. By theorem 4.5, the status of each vertex of G is (O(G) – 1, 0). The total status of an IFG is t[s(G)] = (t_µ[s(G], t_v[s(G]) where t_µ[s(G] is the sum of μ -status of all the vertices of G and t_v[s(G] is the sum of ν -status of all the vertices of G. Hence the total status of a complete μ -perfect intuitionistic fuzzy graph is (n[O(G) – 1], 0).

Similarly, let G be a complete v-perfect intuitionistic fuzzy graph with n vertices. By theorem 4.5, the status of each vertex of G is (0, (n-1)[O(G) - 1]). By the definition of total status, we get the total status of a complete v-perfect intuitionistic fuzzy graph is (0, n(n-1)(O(G) - 1)).

4.10 Theorem: Every μ -perfect intuitionistic fuzzy graph and υ -perfect intuitionistic fuzzy graph is a self median intuitionistic fuzzy graph.

Proof:

Let G be a complete μ -perfect intuitionistic fuzzy graph with n vertices and $n \ge 2$. By theorem 4.5, the status of each vertex of G is (O(G) - 1, 0). Hence minimum status m[s(G)] = maximum status M[s(G)] = (O(G) - 1, 0). Thus G is a self median intuitionistic fuzzy graph.

Let G be a complete v-perfect intuitionistic fuzzy graph with n vertices and $n \ge 2$. By theorem 4.5, the status of each vertex of G is (0, (n-1)(O(G) - 1)).

Hence m[s(G)]=M[s(G)] = (0, (n-1)(O(G) - 1)). Thus G is a self median intuitionistic fuzzy graph.

4.11 Theorem: Every μ -perfect intuitionistic fuzzy graph and υ -perfect intuitionistic fuzzy graph is a regular intuitionistic fuzzy graph.

Proof:

Let G be a complete μ -perfect intuitionistic fuzzy graph or υ -perfect intuitionistic fuzzy graph with n vertices. Then every vertex of G gets equal degree. Then the closed neighbourhood degree of every vertex is the same. So we have $\delta_N(G)=(\delta_{N\mu}(G),\delta_{N\nu}(G)) = (\Delta_{N\mu}(G),\Delta_{N\nu}(G)) = \Delta_N(G)$. Thus G is regular intuitionistic fuzzy graph.

4.12 Theorem: In any μ -perfect intuitionistic fuzzy graph or υ -perfect intuitionistic fuzzy graph, the strength of connectivity (CONN_{G μ} (x, y), CONN_{G υ} (x, y))=($\mu_2(x, y)$, $\upsilon_2(x, y)$) for all x, y \in V.

A. Nagoor Gani and S. Shajitha Begum

Proof:

Let G be a μ -perfect intuitionistic fuzzy graph, the strength of connectivity $(CONN_{G\mu}(x, y), CONN_{G\nu}(x, y)) = (1, 0)$ for all x, $y \in V$. Also the membership value and non membership value of each edge is (1, 0). Hence $(CONN_{G\mu}(x, y), CONN_{G\nu}(x, y)) = (\mu_2(x, y), \upsilon_2(x, y))$ for all x, $y \in V$.

Let G be a υ -perfect intuitionistic fuzzy graph, the strength of connectivity $(CONN_{G\mu}(x, y), CONN_{G\upsilon}(x, y)) = (0, 1)$ for all x, $y \in V$. Also the membership value and non membership value of each edge is (0, 1). Hence $(CONN_{G\mu}(x, y), CONN_{G\upsilon}(x, y)) = (\mu_2(x, y), \upsilon_2(x, y))$ for all x, $y \in V$.

REFERENCES

- 1. Atanassov, K.T. Intuitionistic fuzzy sets: theory and applications, Physica, New York, 1999.
- Bhattacharya, P.(1987). Some Remarks on fuzzy graphs, *Pattern Recognition Letter*, 6: 297-302.
- 3. Bhutani, K. R. and Azriel, Rosenfeld.(2003).Strong arcs in Fuzzy Graphs, *Information Science*, 152:319 322.
- 4. Nagoor Gani, A. and Basheer Ahamed, M.(2009). Perfect fuzzy graphs, *Bulletin of Pure & Applied Sciences-Mathematics*, Vol.28, 2009.
- 5. Nagoor Gani, A. and Chandrasekaran, V.T. Fuzzy Graph Theory, Allied Publishers Pvt. Ltd., 2010.
- Nagoor Gani, A. and Shajitha Begum, S. (2010). Degree, Order and Size in Intuitionistic Fuzzy Graphs, *International Journal of Algorithms, Computing and Mathematics*, Vol. 3(No.3):11-16.
- 7. Nagoor Gani, A. and Shajitha Begum, S.(2010). Status in Intuitionistic Fuzzy Graphs, Proceedings of International Conference on emerging trends in Mathematics and computer applications, Dec 16-18, 2010, p.153 -157.
- 8. Parvathi, R. and Karunambigai, M.G. (2006). Intuitionistic Fuzzy Graphs, Computational Intelligence, Theory and applications, International Conference in Germany, Sept 18 20, 2006.
- 9. Rosenfeld, A. Fuzzy graphs. In LA. Zadeh, KS. Fu, M. Shimura (eds.) Fuzzy sets and their applications, Academic, New York, 1975.
- 10. Zadeh, L.A. (1975). Fuzzy sets, Information and Control, 8:338 353 (1975)