Bulletin of Pure and Applied Sciences Volume 30 E (Math & Stat.) Issue (No.2)2011: P. 145-152 www.bpas.in

PERFECT INTUITIONISTIC FUZZY GRAPHS

¹A. Nagoor Gani and ²S. Shajitha Begum

P.G. and Research Department of Mathematics, Jamal Mohamed College, Tiruchirappalli - 620 020, India E-mail: ¹ganijmc@yahoo.co.in and ²shajithasn@rediffmail.com

Received on 29 June 2011 : Accepted on 18 October 2011

ABSTRACT

In this paper, μ-perfect, v-perfect, complete μ-perfect and complete v-perfect intuitionistic fuzzy graphs are defined. The radius, diameter, status, median and connectivity of perfect intuitionistic fuzzy graphs are discussed.

Keywords: Perfect intuitionistic Fuzzy graph, Distance, Eccentricity, Status and median.

1. INTRODUCTION

The basic idea of a fuzzy relation was defined by Zadeh [10]. Rosenfeld [9] considered fuzzy relations on fuzzy sets and developed the structure of fuzzy graphs, obtaining analogs of several graph theoretical concepts. Bhattacharya [2] obtained other graph theoretic results concerning center and eccentricity. A.Nagoor Gani and M. Basheer Ahamed [4] defined perfect fuzzy graph and complete perfect fuzzy graph and discussed some of its properties.

K.T. Atanassov [1] introduced the concept of Intuitionistic Fuzzy Graph (IFG) in 1994. Research on the theory of intuitionistic fuzzy sets has a vast opening in various applications. R.Parvathy and M.G.Karunambigai [8] gave a new definition for IFG and analyzed its components. A. Nagoor Gani and S. Shajitha Begum [7] defined status and median in IFGs. In this paper, we introduce the notion of μ-perfect, υ-perfect, complete μ-perfect and complete υ-perfect intuitionistic fuzzy graphs and some of its properties are analysed.

2. PRELIMINARIES

2.1. Definition: [8]

An Intuitionistic fuzzy graph is of the form $G = \langle V, E \rangle$ where

- i) $V = \{v_1, v_2, ..., v_n\}$ such that $\mu_1: V \to [0,1]$ and $v_1: V \to [0,1]$ denote the degree of membership and nonmembership of the element $v_i \in V$, respectively, and $0 \leq \mu_1(v_i) + v_1(v_i) \leq 1$ for every $v_i \in V$, $(i = 1, 2, \dots, n)$,
- ii) $E \subseteq V \times V$ where μ_2 : $V \times V \rightarrow [0,1]$ and ν_2 : $V \times V \rightarrow [0,1]$ are such that μ_2 (v_i, v_i) \leq min $\left[\mu_1 \left(v_i\right), \mu_1 \left(v_i\right)\right], \quad \nu_2 \left(v_i, v_i\right) \leq$ max $\left[v_1 \left(v_i\right), \nu_1 \left(v_i\right)\right]$ and $0 \le \mu_2$ $(v_i, v_j) + v_2$ $(v_i, v_j) \le 1$ for every $(v_i, v_j) \in E$, $(i, j = 1, 2, \dots, n)$.

2.2. Definition[8]:An IFG G = <V,E> is a complete IFG, if μ_{2ij} = min (μ_{1i} , μ_{1j}) and v_{2ii} =max (v_{1i}, v_{1i}) for all $v_i \in V$.

2.3. Definition[6]: Let $G = \langle V, E \rangle$ be an IFG. Then the order of G is defined to be $O(G) = (O_{\mathfrak{u}}(G), O_{\mathfrak{v}}(G))$ where $O_{\mathfrak{u}}(G) = \sum_{v \in V} \mu_1(v)$ and $O_{\mathfrak{v}}(G) = \sum_{v \in V} \nu_1(v)$.

2.4. Definition[6]: The size of G is defined to be $S(G) = (S_u(G), S_u(G))$ where $S_{u}(G)=\Sigma_{u\neq v}\mu_{2}(u,v)$ and $S_{v}(G)=\Sigma_{u\neq v}\nu_{2}(u,v)$.

2.5. Definition[6]: Let $G = \langle V, E \rangle$ be an IFG. The neighbourhood of any vertex v is defined as $N(v)=(N_{\rm u}(v),N_{\rm v}(v))$ where $N_{\rm u}(v)=\{w\in V; \mu_2 (v, w)=\mu_1(v) \wedge \mu_1(w)\}$ and $N_v(v) = \{w \in V; v_2(v,w) = v_1(v) \mid v_1(w)\}$ and $N[v] = N(v) \cup \{v\}$ is called the closed neighbourhood of v.

2.6. Definition[7]:The μ –distance $\delta_{\mu}(\nu, \nu)$ is defined to be the minimum of the µ-lengths of all the paths joining v and w. (i.e.) $\delta_u(v, w) = \Lambda \{L_u(P) : P \text{ is a path}$ between v and w}.

The v-distance $\delta_{v}(v, w)$ is defined to be the maximum of the v-lengths of all the paths joining v and w. (i.e.) $\delta_v(v, w) = V \{L_v(P) : P \text{ is a path between } v \text{ and } w\}.$

2.7. Definition[7]: Let $G = \langle V, E \rangle$ be an IFG. The eccentricity of a node v is defined as $e(v) = (e_{ii}(v), e_{ii}(v))$ where the μ –eccentricity $e_{ii}(v)$ is the maximum of all the μ-distances $\delta_u(v, w)$ for every w ϵV . (i.e.) $e_u(v) = V \{ \delta_u(v, w), w \epsilon V \}$ and the γ-eccentricity $e_0(v)$ is the maximum of all the v-distances $\delta_0(v, w)$ for every w ϵ V. (i.e.) $e_v(v) = V \{ \delta_v(v, w), w \in V \}$.

2.8. Definition[7]: A radius of an IFG is $r(G) = (r_u(G), r_v(G))$ where the μ -radius $r_{\mu}(G)$ is the minimum of all the μ –eccentrities of the vertices of G and υ –radius $r_{\upsilon}(G)$ is the minimum of all the v -eccentricities of the vertices of G.

2.9. Definition[7]: The diameter $d(G) = (d_u(G), d_u(G))$ where μ -diameter $d_u(G)$ is the maximum of all the μ -eccentricities of the vertices of G and $d_n(G)$ is the maximum of all the v-eccentricities of the vertices of G.

2.10. Definition[7]: The μ -status $s_{\mu}(\nu)$ of G is defined to be the sum of all the μ-distances $\delta_u(v, w)$ for every w ϵ V. i.e. $s_u(v) = \sum \delta_u(v, w)$, w ϵ V

The v-status $s_v(v)$ of G is defined to be the sum of all the v-distances $\delta_v(v, w)$ for every w \in V. i.e. $s_{v}(v) = \sum \delta_{v}(v, w)$, w \in V

2.11. Definition[7]:The Median is defined as $M(G) = (M_{\text{u}}(G), M_{\text{v}}(G))$ where $M_{\text{u}}(G)$ is the set of nodes with minimum μ status and $M_{\nu}(G)$ is the set of nodes with minimum status.

2.12. Definition[6]**:** The closed neighbourhood degree of a vertex 'v' is defined as $d_N[v] = (d_{N\mu}[v], d_{N\mu}[v])$ where $d_{N\mu}[v] = \sum_{w \in N(v)} \mu_1(w) + \mu_1(v)$ and $d_{N\mu}[v] =$ $\Sigma_{W \in N(V)} v_1(W) + v_1(V)$.

2.13. Definition[6]: An intuitionistic fuzzy graph $G = \langle V, E \rangle$ is said to be regular, if all the vertices have the same closed neighbourhood degree.

2.14 Definition[5]: If v_i , $v_j \in V \subseteq G$, then the μ -strength of connectedness between v_i and v_j is CONNG_μ(v_i , v_j) = sup { μ_2^k (v_i , v_j) / k = 1,2,...,n) } and u-strength of connectedness between v_i and v_j is CONNG_u(v_i , v_j) = inf { v_2^k (v_i , v_j) / k = 1,2,...,n)}.

3. PERFECT INTUITIONISTIC FUZZY GRAPHS

3.1. Definition: Let G = $\langle V, E \rangle$ be an IFG. A vertex is called a μ_1 -perfect intuitionistic fuzzy vertex if μ_1 (v) = 1 and a v_1 -perfect intuitionistic fuzzy vertex if $v_1(v) = 1$ for some $v \in V$.

An edge (v, w) is called a μ_1 -perfect intuitionistic fuzzy edge if $\mu_2(v, w) = 1$ and a v_1 -perfect intuitionistic fuzzy edge if v_2 (v, w) = 1 for some (v, w) \in E.

3.2 Example:

3.3 Definition: An IFG G = $<$ V, E $>$ is called a μ_1 -perfect intuitionistic fuzzy graph if μ_1 (v) = 1 for all veV and a v_1 -perfect intuitionistic fuzzy graph if $v_1(v) = 1$ for all $v \in V$.

3.4 Example:

3.5 Definition: An IFG G = \lt V, E > is called a μ_2 -perfect intuitionistic fuzzy graph if μ_2 (v, w) = 1 for all (v, w) \in E and v_2 - perfect intuitionistic fuzzy graph if v_2 (v, w) $= 1$ for all $(v, w) \in E$.

3.6 Example:

A. Nagoor Gani and S. Shajitha Begum

3.7 Remark:

i. Every μ_2 -perfect intuitionistic fuzzy graph is μ_1 -perfect intuitionistic fuzzy graph, converse need not be true.

For example, the graph given in Fig.4 is μ_2 -perfect intuitionistic fuzzy graph and μ_1 -perfect intuitionistic fuzzy graph whereas the graph given in Fig.2 is μ_1 -perfect intuitionistic fuzzy graph but not μ_2 -perfect intuitionistic fuzzy graph.

ii. Every v_2 -perfect intuitionistic fuzzy graph is v_1 -perfect intuitionistic fuzzy graph, converse need not be true.

For example, the graph given in Fig.5 is v_2 -perfect intuitionistic fuzzy graph and v_1 -perfect intuitionistic fuzzy graph whereas the graph given in Fig.3 is v_1 -perfect intuitionistic fuzzy graph but not v_2 -perfect intuitionistic fuzzy graph.

3.8 Definition: An IFG G = \lt V, E $>$ is called a complete μ_2 -perfect intuitionistic fuzzy graph if $\mu_2(v, w) = 1$ for all $(v, w) \in V$ and a complete v_2 - perfect intuitionistic fuzzy graph if v_2 (v, w) = 1for all (v, w) \in V.

3.9 Example:

3.10 Remark:

i. Every complete μ_2 -perfect intuitionistic fuzzy graph is μ_2 -perfect intuitionistic fuzzy graph, converse need not be true.

For example, the graph given in Fig.6 is complete μ_2 -perfect intuitionistic fuzzy graph and μ₂-perfect intuitionistic fuzzy graph whereas the graph given in Fig.4 is μ_2 -perfect intuitionistic fuzzy graph but not complete μ_2 -perfect intuitionistic fuzzy graph.

ii. Every complete v_2 -perfect intuitionistic fuzzy graph is v_2 -perfect intuitionistic fuzzy graph, converse need not be true.

For example, the graph given in Fig.7 is complete v_2 -perfect intuitionistic fuzzy graph and v_2 -perfect intuitionistic fuzzy graph whereas the graph given in Fig.5 is v_2 -perfect intuitionistic fuzzy graph but not complete v_2 -perfect intuitionistic fuzzy graph.

3.11 Definition: An IFG G = < V, E > is called a μ-perfect intuitionistic fuzzy graph if it has a μ_2 -perfect intuitionistic fuzzy graph and a ν -perfect intuitionistic fuzzy graph if it has a v_2 -perfect intuitionistic fuzzy graph.

PERFECT INTUITIONISTIC FUZZY GRAPHS

3.12 Definition: An IFG G = \lt V, E $>$ is called complete μ -perfect intuitionistic fuzzy graph if it has a μ_2 -perfect intuitionistic fuzzy graph and complete ν -perfect intuitionistic fuzzy graph if it has a v_2 -perfect intuitionistic fuzzy graph.

3.13 Remark:

Every complete μ-perfect intuitionistic fuzzy graph is a μ-perfect intuitionistic fuzzy graph, but not conversely true. v_1 (1, 0)

Every complete v -perfect intuitionistic fuzzy graph is a v -perfect intuitionistic fuzzy graph, but not conversely true.

4. STATUS IN PERFECT IFGS

4.1 Theorem:The radius of a complete μ-perfect intuitionistic fuzzy graph with n vertices is always $(1, 0)$ and complete v -perfect intuitionistic fuzzy graph with n vertices is always (0, n-1) .

Proof:

Let $G = \langle V, E \rangle$ be a complete μ -perfect intuitionistic fuzzy graph with n vertices. The eccentricity $e(v) = (e_u(v), e_v(v))$ of each vertex is always (1, 0). We know that the radius is minimum eccentricity among the vertices. Hence the radius of a complete μ-perfect intuitionistic fuzzy graph is always (1,0).

Let $G = \langle V, E \rangle$ be a complete v-perfect intuitionistic fuzzy graph with n vertices. The eccentricity $e(v) = (e_{ii}(v), e_{ii}(v))$ of each vertex is always (0, n-1). We know that the radius is minimum eccentricity among the vertices. Hence the radius of a complete v -perfect intuitionistic fuzzy graph is always $(0, n-1)$.

A. Nagoor Gani and S. Shajitha Begum

4.2 Corollary: The diameter of a complete μ-perfect intuitionistic fuzzy graph with n vertices is $(1, 0)$ and complete v -perfect intuitionistic fuzzy graph with n vertices is $(0, n-1)$.

4.3 Example:

Consider the μ-perfect intuitionistic fuzzy graph in Fig. 6. $e_{\mu}(v_1) = e_{\mu}(v_2) = e_{\mu}(v_3) = e_{\mu}(v_4) = (1, 0)$. Thus $r_{\mu}(G) = (1, 0)$ and $d_{\mu}(G) = (1, 0)$. Consider the v -perfect intuitionistic fuzzy graph in Fig. 7. $e_y(V_1) = e_y(V_2) = e_y(V_3) = e_y(V_4) = (0, 3)$. Thus $r_y(G) = (0, 3)$ and $d_y(G) = (0, 3)$.

4.4 Theorem: Every complete μ-perfect intuitionistic fuzzy graph is self μ-centered and every complete v -perfect intuitionistic fuzzy graph is self v -centered.

Proof:

Let $G = \langle V, E \rangle$ be a complete μ -perfect intuitionistic fuzzy graph with n vertices. The eccentricity $e(v) = (e_{u}(v), e_{v}(v))$ of each vertex is always (1, 0). A connected IFG is self μ-centered if each node has same μ-eccentricity. Hence a complete μ-perfect intuitionistic fuzzy graph is self μ-centered.

Let $G = \langle V, E \rangle$ be a complete v-perfect intuitionistic fuzzy graph with n vertices. The eccentricity $e(v) = (e_{u}(v), e_{v}(v))$ of each vertex is always (0, n-1). A connected IFG is self v-centered if each node has same v-eccentricity. Hence a complete v-perfect intuitionistic fuzzy graph is self v-centered.

4.5 Theorem: The status of complete μ-perfect intuitionistic fuzzy graph is $(O(G) - 1, 0)$ and complete v-perfect intuitionistic fuzzy graph is $(0, (n-1)(O(G) - 1))$ where n is the number of vertices.

Proof:

Let G be a complete μ-perfect intuitionistic fuzzy graph with n vertices. Then we have the distance $\delta(v, w) = (\delta_u(v, w), \delta_v(v, w)) = (1, 0)$ for any v, w $\in V$. The status of each vertex is sum of the distance between that vertex and all other vertices. Thus the status of each vertex is $(O(G) - 1, 0)$.

Let G be a complete v -perfect intuitionistic fuzzy graph with n vertices. Then we have the distance $\delta(v, w) = (\delta_{\mu}(v, w), \delta_{\nu}(v, w)) = (0, n-1)$ for any $v, w \in V$. The status of each vertex is sum of the distance between that vertex and all other vertices.

Thus the status of each vertex is $(0, (n-1)(O(G) - 1))$.

4.6 Corollary: The median of each vertex of a complete μ-perfect intuitionistic fuzzy graph is $(O(G) - 1, 0)$ and a complete v-perfect intuitionistic fuzzy graph is (0 , $(n-1)(O(G) - 1)$) where n is the number of vertices.

4.7 Remark: In a complete μ-perfect intuitionistic fuzzy graph and complete -perfect intuitionistic fuzzy graph, all vertices are median vertices.

4.8. Example:

Consider the complete μ-perfect intuitionistic fuzzy graph in Fig.8. Here $n = 3$ and $O(G) = (3, 0).$

 $s(v_1) = s(v_2) = s(v_3) = (2, 0)$. Hence $s(G) = (2, 0)$. Also the median $M(G) = (2, 0)$ and Median vertex set = { v_1, v_2, v_3 }. Consider the complete v -perfect intuitionistic fuzzy graph in Fig. 10. Here $n = 3$ and $O(G) = (3, 0)$.

Here $s(v_1) = s(v_2) = s(v_3) = (0, 4)$. Hence $s(G) = (0, 4)$. Also the median M(G) = (0, 4) and Median vertex set = $\{y_1, y_2, y_3\}$.

4.9 Theorem: The total status of a complete μ-perfect intuitionistic fuzzy graph is $(n[O(G) - 1], 0)$ and a complete v-perfect intuitionistic fuzzy graph is $(0, n(n-1)(O(G) - 1))$ where n is the number of vertices.

Proof:

Let G be a complete μ-perfect intuitionistic fuzzy graph with n vertices. By theorem 4.5, the status of each vertex of G is $(O(G) - 1, 0)$. The total status of an IFG is $t[s(G)] = (t_u[s(G], t_v[s(G])$ where $t_u[s(G]$ is the sum of μ -status of all the vertices of G and t_0 [s(G] is the sum of v-status of all the vertices of G. Hence the total status of a complete μ -perfect intuitionistic fuzzy graph is $(n[O(G) - 1], 0)$.

Similarly, let G be a complete v-perfect intuitionistic fuzzy graph with n vertices. By theorem 4.5, the status of each vertex of G is $(0, (n-1)$ [O(G) – 1]). By the definition of total status, we get the total status of a complete v -perfect intuitionistic fuzzy graph is $(0, n(n-1)(O(G) - 1))$.

4.10 Theorem: Every μ-perfect intuitionistic fuzzy graph and v-perfect intuitionistic fuzzy graph is a self median intuitionistic fuzzy graph.

Proof:

Let G be a complete μ -perfect intuitionistic fuzzy graph with n vertices and $n \geq 2$. By theorem 4.5, the status of each vertex of G is $(O(G) - 1, 0)$. Hence minimum status $m[s(G)]$ = maximum status $M[s(G)] = (O(G) - 1, 0)$. Thus G is a self median intuitionistic fuzzy graph.

Let G be a complete v-perfect intuitionistic fuzzy graph with n vertices and $n \ge 2$. By theorem 4.5, the status of each vertex of G is $(0, (n-1)(O(G) - 1))$.

Hence $m[s(G)] = M[s(G)] = (0, (n-1)(O(G) - 1)$. Thus G is a self median intuitionistic fuzzy graph.

4.11 Theorem: Every μ-perfect intuitionistic fuzzy graph and _{v-perfect intuitionistic} fuzzy graph is a regular intuitionistic fuzzy graph.

Proof:

Let G be a complete µ-perfect intuitionistic fuzzy graph or v-perfect intuitionistic fuzzy graph with n vertices. Then every vertex of G gets equal degree. Then the closed neighbourhood degree of every vertex is the same. So we have $\delta_N(G)=(\delta_{N_1}(G),\delta_{N_2}(G))=(\Delta_{N_1}(G),\Delta_{N_2}(G))=\Delta_N(G)$. Thus G is regular intuitionistic fuzzy graph.

4.12 Theorem: In any μ-perfect intuitionistic fuzzy graph or *v*-perfect intuitionistic fuzzy graph, the strength of connectivity (CONN_{Gu} (x, y), CONN_{Gu} (x, y))=($\mu_2(x, y)$, $v_2(x, y)$) for all $x, y \in V$.

A. Nagoor Gani and S. Shajitha Begum

Proof:

Let G be a μ-perfect intuitionistic fuzzy graph, the strength of connectivity $(CONN_{Gu} (x, y), CONN_{Gu} (x, y)) = (1, 0)$ for all $x, y \in V$. Also the membership value and non membership value of each edge is (1, 0). Hence $(CONN_{GU}(x, y), CONN_{Gu}(x, y)) = (\mu_2(x, y), \nu_2(x, y))$ for all $x, y \in V$.

Let G be a v-perfect intuitionistic fuzzy graph, the strength of connectivity $(CONN_{Gu} (x, y), CONN_{Gu} (x, y)) = (0, 1)$ for all $x, y \in V$. Also the membership value and non membership value of each edge is (0, 1). Hence $(CONN_{Gu} (x, y), COMN_{Gu} (x, y)) = (\mu_2(x, y), \nu_2(x, y))$ for all $x, y \in V$.

REFERENCES

- 1. Atanassov, K.T. Intuitionistic fuzzy sets: theory and applications, Physica, New York, 1999.
- 2. Bhattacharya, P.(1987). Some Remarks on fuzzy graphs, *Pattern Recognition Letter,* 6: 297-302.
- 3. Bhutani, K. R. and Azriel, Rosenfeld.(2003).Strong arcs in Fuzzy Graphs, *Information Science,* 152:319 – 322.
- 4. Nagoor Gani, A. and Basheer Ahamed, M.(2009). Perfect fuzzy graphs, *Bulletin of Pure & Applied Sciences-Mathematics*,Vol.28, 2009.
- 5. Nagoor Gani, A. and Chandrasekaran, V.T. Fuzzy Graph Theory, Allied Publishers Pvt. Ltd., 2010.
- 6. Nagoor Gani, A. and Shajitha Begum,S.(2010). Degree, Order and Size in Intuitionistic Fuzzy Graphs, *International Journal of Algorithms, Computing and Mathematics*, Vol. 3(No.3):11-16.
- 7. Nagoor Gani, A. and Shajitha Begum, S.(2010). Status in Intuitionistic Fuzzy Graphs, Proceedings of International Conference on emerging trends in Mathematics and computer applications, Dec 16-18, 2010, p.153 -157.
- 8. Parvathi, R. and Karunambigai, M.G.(2006).Intuitionistic Fuzzy Graphs, Computational Intelligence, Theory and applications, International Conference in Germany, Sept 18 - 20, 2006.
- 9. Rosenfeld, A. Fuzzy graphs. In LA. Zadeh, KS. Fu, M. Shimura (eds.) Fuzzy sets and their applications, Academic, New York, 1975.
- 10. Zadeh, L.A.(1975). Fuzzy sets, *Information and Control*, 8:338 353 (1975)