STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2004-05 & thereafter)

SUBJECT CODE: CH/MO/SP64

B.Sc. DEGREE EXAMINATION, APRIL 2008 BRANCH IV - CHEMISTRY SIXTH SEMESTER

COURSE : MAJOR - OPTIONAL PAPER : SPECTROSCOPY TIME : 30 MINUTES MAX. MARKS : 30 SECTION - A TO BE ANSWERED ON THE QUESTION PAPER ITSELF. ANSWER ALL THE QUESTIONS. (30x1=30) I. Choose the correct answer: 1. Which of the molecule can show pure rotational spectrum? a) H_2 b) Cl_2 c) CO_2 d) SO_2 2. Electronic band spectra are observed in the region a) uv -visible b) infra red c) nmr d) esr 3. The frequency of visible radiation is greater than a) uv -visible b) v -rays c) v -rays d) v -rays	••	• • • • • • • • • • • • • • • • • • • •	••••	Reg. No							
TIME : 30 MINUTES SECTION – A TO BE ANSWERED ON THE QUESTION PAPER ITSELF. ANSWER ALL THE QUESTIONS. (30x1=30) I. Choose the correct answer: 1. Which of the molecule can show pure rotational spectrum? a) H_2 b) Cl_2 c) CO_2 d) SO_2 2. Electronic band spectra are observed in the region a) uv-visible b) infra red c) nmr d) esr 3. The frequency of visible radiation is greater than a) ir b) γ -rays c) X-rays d) uv 4. The selection rule of the transition in rotational energy levels for a diatornic molecule in the raman spectrum is					- OPTIONAL	MAJOR -	:	COURSE			
SECTION – A TO BE ANSWERED ON THE QUESTION PAPER ITSELF. ANSWER ALL THE QUESTIONS. (30x1=30) I. Choose the correct answer: 1. Which of the molecule can show pure rotational spectrum? a) H_2 b) Cl_2 c) CO_2 d) SO_2 2. Electronic band spectra are observed in the region a) uv-visible b) infra red c) nmr d) esr 3. The frequency of visible radiation is greater than a) ir b) γ -rays c) X-rays d) uv 4. The selection rule of the transition in rotational energy levels for a diatornic molecule in the raman spectrum is					OSCOPY	SPECTRO	:	PAPER			
TO BE ANSWERED ON THE QUESTION PAPER ITSELF. ANSWER ALL THE QUESTIONS. (30x1=30) I. Choose the correct answer: 1. Which of the molecule can show pure rotational spectrum? a) H_2 b) Cl_2 c) CO_2 d) SO_2 2. Electronic band spectra are observed in the region a) uv-visible b) infra red c) nmr d) esr 3. The frequency of visible radiation is greater than a) ir b) γ -rays c) X-rays d) uv 4. The selection rule of the transition in rotational energy levels for a diatornic molecule in the raman spectrum is		ARKS: 30	M	MAX	ΓES	30 MINUT	:	TIME			
TO BE ANSWERED ON THE QUESTION PAPER ITSELF. ANSWER ALL THE QUESTIONS. (30x1=30) I. Choose the correct answer: 1. Which of the molecule can show pure rotational spectrum? a) H_2 b) Cl_2 c) CO_2 d) SO_2 2. Electronic band spectra are observed in the region a) uv-visible b) infra red c) nmr d) esr 3. The frequency of visible radiation is greater than a) ir b) γ -rays c) X-rays d) uv 4. The selection rule of the transition in rotational energy levels for a diatornic molecule in the raman spectrum is											
 ANSWER ALL THE QUESTIONS. (30x1=30) I. Choose the correct answer: Which of the molecule can show pure rotational spectrum? a) H₂ b) Cl₂ c) CO₂ d) SO₂ Electronic band spectra are observed in the region a) uv-visible b) infra red c) nmr d) esr The frequency of visible radiation is greater than a) ir γ-rays c) X-rays d) uv The selection rule of the transition in rotational energy levels for a diatornic molecule in the raman spectrum is 		_	~								
 Choose the correct answer: Which of the molecule can show pure rotational spectrum? A) H₂ B) Cl₂ CO₂ Electronic band spectra are observed in the region											
 Which of the molecule can show pure rotational spectrum? a) H₂ b) Cl₂ c) CO₂ d) SO₂ Electronic band spectra are observed in the region a) uv-visible b) infra red c) nmr d) esr The frequency of visible radiation is greater than a) ir b) γ-rays c) X-rays d) uv The selection rule of the transition in rotational energy levels for a diatornic molecule in the raman spectrum is 		x1=30)	(30			_					
 a) H₂ b) Cl₂ c) CO₂ d) SO₂ 2. Electronic band spectra are observed in the region a) uv-visible b) infra red c) nmr d) esr 3. The frequency of visible radiation is greater than a) ir b) γ-rays c) X-rays d) uv 4. The selection rule of the transition in rotational energy levels for a diatornic molecule in the raman spectrum is 											
 Electronic band spectra are observed in the region a) uv-visible b) infra red c) nmr d) esr The frequency of visible radiation is greater than a) ir b) γ-rays c) X-rays d) uv The selection rule of the transition in rotational energy levels for a diatornic molecule in the raman spectrum is 		G O	•	-	-			1.			
 a) uv-visible b) infra red c) nmr d) esr 3. The frequency of visible radiation is greater than a) ir b) γ-rays c) X-rays d) uv 4. The selection rule of the transition in rotational energy levels for a diatornic molecule in the raman spectrum is 		SO_2	d)	c) CO_2	Cl_2 c	b)	a) H_2				
 a) uv-visible b) infra red c) nmr d) esr 3. The frequency of visible radiation is greater than a) ir b) γ-rays c) X-rays d) uv 4. The selection rule of the transition in rotational energy levels for a diatornic molecule in the raman spectrum is 				in the region	ra are observed in the	hand spectr	Flectronic	2			
 3. The frequency of visible radiation is greater than a) ir b) γ-rays c) X-rays d) uv 4. The selection rule of the transition in rotational energy levels for a diatornic molecule in the raman spectrum is 		esr	d)	_				2.			
 a) ir b) γ-rays c) X-rays d) uv 4. The selection rule of the transition in rotational energy levels for a diatornic molecule in the raman spectrum is 		CSI	u)	c) IIIII		0) 1	<i>a) a</i> v visi				
4. The selection rule of the transition in rotational energy levels for a diatornic molecule in the raman spectrum is				greater than	ole radiation is greate	ency of visib	The freque	3.			
molecule in the raman spectrum is		uv	d)	c) X-rays	γ -rays c	b)	a) ir				
molecule in the raman spectrum is											
		diatornic	· · · · · · · · · · · · · · · · · · ·								
a) $\Delta J = \pm 1$ b) $\Delta J = 0, \pm 2$ c) $\Delta J = \pm 2$ d) $\Delta J = \pm 2, \pm 1$		A I 12 11	4)	a) AI 12							
		$\Delta J = \pm 2, \pm 1$	a)	C) $\Delta J = +2$	$\Delta J = 0, \pm 2$	II D)	a) $\Delta J = \pm$				
5. The number of equivalent protons in nmr for 2-chloropropane is		s	ne i	n nmr for 2-chloropropa	alent protons in nm	her of equiva	The numb	5			
a) 4 b) 1 c) 2 d) 3						_		٥.			
				,	•	,	,				
6. Groups which modify the position of absorption relative to the chromophore in		omophore in	chr	absorption relative to the	the position of absor			6.			
electronic spectra are		_									
a) cytochromes b) bathochromes c) hypsochromes d) auxochromes		auxochromes	d)	c) hypsochromes							
7. ^{13}C has a spin quantum number					ım number	spin quantu	^{13}C has a	7.			
a) zero b) one c) $\frac{1}{2}$ d) $\frac{3}{2}$		3	d)	c) $\frac{1}{-}$	one c	b) (a) zero				
		2	α,	2		ŕ					
8. The esr spectrum of p-benzoquinone contains								8.			
a) quintet b) quartet c) doublet d) triplet		triplet	d)	c) doublet	quartet c	b) (a) quintet				
9. The g-value for a free electron is					electron is	ue for a free	The g-valu	Q			
a) 1.008 b) 2.0023 c) 2.016 d) 2.0362		2.0362	d)	c) 2.016			_	7.			
			/	,		<i>→</i>	,				
10. The compound contains				S	contains	ound (The comp	10.			
a) one exocyclic bond b) one endo and one exo											
c) two endo cyclic bonds d) two exocyclic bonds					· · · · · · · · · · · · · · · · · · ·	•	,				
							T. 1	4.4			
11. The molecular ion peak in a mass spectrum corresponds to the a) base peak b) metastable peak c) parent peak d) stableion peak		stableion neak	4)					11.			

/2/ CH/MO/SP64

	12.	a) trimethyl silar	eference in nmr is ne vlphoxide	b) tetramethy?	l silane yl methyl silicone		
	13.	Which of the foll	owing molecules	will show esr			
		a) N_2	b) O_2	c) H ₂	d) <i>Cl</i> ₂		
	14.	Conjugation of c	arbonyl with C =	C leads to the carbon	yl stretching frequency		
		a) increased	b) decreased	c) remains unalte	red d) broadened		
	15.	McLafferty peak	for CH_3CH_2CH	CH_2CHO occurs at $\frac{m}{e}$.			
		a) 44	b) 57	c) 70	d) 28		
I1	N	Tatch the following	g:				
	16. 17. 18. 19. 20.			a) Microwave b) Infrared c) Raman spe d) Mass Spec e) NMR	ctra tra		
Ш	F	ill in the blanks:		f) Mossbauer			
	21.	The standard use	d in esr is		·		
	22.	$n-\pi$ * transition	ns are	in energ	y than $\pi - \pi^*$ transitions.		
	23.	The expansion for	or TMS is				
	24.	γ – ray resonanc	e spectroscopy is	the other name for	·		
	25.	The parent ion of	f aromatic compo	unds is	than aliphatic compounds		
IV	A	answer in one or tw	vo sentences:				
	26.	What is a metasta	able peak?				
	27.	What is gyromag	netic ratio?				
	28.	Define chemical	shift.				
	29.	Why cis-stilbene	absorbs at a shor	ter wavelength compa	ared to trans-stilbene?		
	30.	What is Born-Op	penheimer approx	ximation?			

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2004-05 & thereafter)

SUBJECT CODE: CH/MO/SP64

B.Sc. DEGREE EXAMINATION, APRIL 2008 BRANCH IV - CHEMISTRY SIXTH SEMESTER

COURSE : MAJOR - OPTIONAL PAPER : SPECTROSCOPY

TIME : 2 ½ HOURS MAX. MARKS : 70

SECTION - B

ANSWER ANY FIVE QUESTIONS:

5X6=30

- 1. Explain the rule of mutual exclusion with suitable examples.
- 2. a) List any three factors which affect the magnitude of g values in epr.
 - b) The fundamental vibrational frequency of ${}^{1}H^{35}Cl$ is $2890cm^{-1}$. Calculate the fundamental vibrational frequency of ${}^{2}D^{35}Cl$. (3+3)
- 3. State and explain the nitrogen rule with two examples.
- 4. Discuss how Raman spectra complements IR..
- 5. Write a note on Franck Condon principle.
- 6. What are isotope peaks & their significance.
- 7. Sketch and explain the nmr spectrum of m-cresol.

SECTION - C

ANSWER ANY TWO QUESTIONS:

2X20=40

- 8. How will you distinguish the following by suitable spectral methods.
 - a) Benzoic acid and benzyl alcohol (infrared)
 - b) Benzyl alcohol and o-cresol (mass spectrum)
 - c) Fe^{2+} and Fe^{3+} using mossbauer
 - d) Cu^{2+} and Cu^{+} using esr.
- 9. a) Explain the types of electronic transitions in organic molecules. What is the effect of polar and nonpolar solvents on these transitions.
 - b) Arrange the following in the increasing order of λ_{max} giving their λ_{max} using Woodward Fieser rules.

c) Calculate the λ_{\max} for the following enones.

(8+6+6)

/2/ CH/MO/SP64

- 10. Write briefly on
 - a) Retro Diels Alder rearrangement
 - b) Mass spectrum of benzylchloride
 - c) Shielding & deshielding protons

(6+6+8)

- 11. a) How is IR spectra useful in studying hydrogen bonding
 - b) Discuss McLafferty rearrangement with two suitable examples.
 - c) The pure rotational (microwave) spectrum of CN consists of a series of equally spaced lines separated by $3.7978cm^{-1}$. Calculate the internuclear distance of the molecule. The molar masses are $^{12}C = 12.011$ $^{14}N = 14.007 \ gmol^{-1}$ (8+6+6)

