STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2004-05 & thereafter)

SUBJECT CODE: CH/MC/PC64

B.Sc. DEGREE EXAMINATION, APRIL 2008 BRANCH IV - CHEMISTRY SIXTH SEMESTER

Reg. No

COURSE : MAJOR-CORE

PAPER : PHYSICAL CHEMISTRY - III

TIME : 30 MINUTES MAX. MARKS : 30

SECTION – A TO BE ANSWERED ON THE QUESTION PAPER ITSELF.

ANSWER ALL THE QUESTIONS.

(30x1=30)

- I. Choose the correct answer:
 - 1. A salt bridge containing KCl should not be used for the cell $Ag / Ag^+ // Fe^{3+} / Fe^{2+}$, Pt because
 - (i) Cl_2 formed is adsorbed on Pt
 - (ii) Ag and K would form a solid solution
 - (iii) AgCl would be precipitated.
 - a) (i) and (ii)
- b) (i), (ii) and (iii)
- c) (iii) only
- d) (i) only

- 2. The unit of first order rate constant is
 - a) min^{-1}

b) $mol dm^{-3} min^{-1}$

c) $mol^2 dm^{-6} min^{-1}$

d) $mol^{-1} dm^3 mol^{-1}$

- 3. For a reversible reaction
 - a) $\Delta H = \Delta E$

b) $\Delta H = (E_a)_f - (E_a)_r$

c) $\Delta H = (E_a)_r - (E_a)_f$

- d) $\Delta H = \Delta E + (E_a)_f (E_a)_r$
- 4. According to collision theory, all collisions are fruitful if
 - a) $E_a = 1$
- b) $E_a = k$
- c) $\Delta H = E_a$
- d) $E_a = 0$
- 5. Molar conductance of a substance at a particular concentration is equal to its equivalent conductance at that concentration when Eq wt = x mol wt then x is
 - 1) 1

b) 2

c) 0

d) 3

- According to Kohlrausch's law, 6.
 - a) $\bigwedge_{Mg^{2+}}^{o} + \bigwedge_{Cl_{2}^{2-}}^{o}$
- b) $\bigwedge_{Mg^{2+}}^{o} + \bigwedge_{Cl_{2}}^{o}$
- b) $\bigwedge_{Mg^{2+}}^{o} + \bigwedge_{Cl}^{o}$
- b) $\bigwedge_{Mg^{2+}}^{o} + 2 \bigwedge_{Cl^{-}}^{o}$
- Which among the following would not give a straight line in a plot of \wedge_c vs \sqrt{c} ? 7.
 - a) *NaCl*
- b) KCl
- c) HCN
- d) CH₃COONa

- 8. For a cell at equilibrium,
 - a) $E_{cell}^o = 0 \text{ V}$

- b) $E_{cell}^{o} = 1 \text{ V}$ c) $E_{cell} = 1 \text{ V}$ d) $E_{cell} = 0 \text{ V}$
- 9. Which one among the following is true during adsorption?
 - a) $\Delta G = +ve$
- b) $\Delta S = -ve$
- c) $\Delta S = +ve$
- d) $\Delta H = +ve$
- The standard cell potential of an electrolyte concentration cell is 10.
 - a) 1 V
- b) 0.76 V
- c) 0 V
- d) 1.48 V

II. Fill in the blanks:

- 11. A pressure cooker reduces cooking time because ______.
- 12. The unit of rate of a reaction is _____
- In simple collision theory, the steric factor, P, accounts for ______. 13.
- If K is expressed in sm^{-1} , then \wedge can be calculated (in $sm^2 \ mol^{-1}$) using the 14. formula .
- 15. The pH of an aqueous solution of sodium acetate is ______.
- When aq HCl is added, the solubility of AgCl 16.
- The cell potential of Daniel cell after attaining equilibrium is ______. 17.
- 18. A salt can be used in salt bridge if ______.
- Quinhydrone is an equimolar mixture of _____ and 19.
- For the adsorption of a gas on a solid to be spontaneous, the enthalpy of the system 20. should ______ to a large extent.

III. Answer the following in one or two sentences:

21.	What is steric factor?
22.	Define activation energy.
23.	What is phosphorescence?
24.	Write the Freundlich equation.
25.	What are transport numbers?
26.	Define molar conductance.
27.	Calculate the ionic strength of 0.1m KI.
28.	Write the Nernst equation for the half-cell reaction Zn^{2+}/Zn .
29.	Define liquid junction potential.
30.	What is dicharge potential?

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2004-05)

SUBJECT CODE: CH/MC/PC64

B.Sc. DEGREE EXAMINATION, APRIL 2008 BRANCH IV - CHEMISTRY SIXTH SEMESTER

COURSE : MAJOR – CORE

PAPER : PHYSICAL CHEMISTRY - III

TIME : 2½ HOURS MAX. MARKS : 70

SECTION - B

ANSWER ANY FIVE QUESTIONS:

(5x6=30)

- 1. Deduce the expression for 1st order rate constant and half life period.
- 2. The half life of a first order reaction is 10 min. Calculate the time required for 99.9% completion and 87.5% completion of the reaction.
- 3. Explain the different types of electrodes.
- 4. $E_{Fe}^{0}_{3+/Fe}^{3+/Fe} = xV$ and $E_{Fe}^{0}_{2+/Fe}^{2+/Fe} = yV$. Calculate $E_{Fe}^{0}_{3+/Fe}^{3+/Fe}^{2+/Fe} = xV$.
- 5. Explain (i) Wien effect (ii) Debye & Falkenhagan effect
- 6. The solubility of AgCl at a particular temperature is $1.3 \times 10^{-5} M$. Also calculate its solubility in 0.1M HCl at that temperature.
- 7. Distinguish between physisorption and chemisorption.

SECTION - C

ANSWER ANY TWO QUESTIONS:

(2x20=40)

- 8. a) Deduce an expression for rate constant of a bimolecular reaction using collision theory.
 - b) Discuss the significance of $\Delta S^{\#}$ and $\Delta G^{\#}$.
 - c) Illustrate photosensitisation with an example.

- 9. a) How are transport numbers determined using Hittorf's and moving boundary methods.
 - b) Write short notes on
 - (i) Ostwald dilution law
 - (ii) Henderson-Hasselbach equation
- 10. Explain the following
 - (i) Lead storage battery
 - (ii) $H_2 O_2$ fuel cell
 - (iii) Weston cadmium cell
 - (iv) applications of electrochemical series
- 11. a) Explain the determination of surface area using BET isotherm.
 - b) Derive the Langmuir equation.
 - c) Illustrate chemiluminescence with an example.
 - d) Explain the determination of pH by glass electrode.

