STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2008-09 & thereafter)

SUBJECT CODE: CS/MC/AD24

B. C. A. DEGREE EXAMINATION, APRIL 2011 SECOND SEMESTER

		REG. NO.			
	:	MAJOR CORE ALGORITHMS AND 30 MINUTES		MAX. MARKS: 20	
TO BE A	NSWE	RD ON THE QUESTION	PAPER ITSELF.		
Answer a	ıll quest		SECTION-A	$(20 \times 1 = 20)$	
. Choo	se the co	orrect answer:			
		structure shows the hierard (b) Queues			
2. Comple	exity of l	binary search algorithm is a	given by		
(a) c(n)	$=\log_2 n$	(b) $c(n)=2\log n$	$(c) c(n) = n/2 \log $	(d) None	
		efficiency is the minimu of data values.	ım number of steps that an	algorithm can take fo	
		(b) Average case	(c) Worst case	(d) General case	
4(a) Li	near arra	is a list of finite number (b) non linear array	n of homogeneous data el (c) Matrix	ements. (d) all	
5.Bubble	sort algo	orithm requires	passes.		
(a) n	C	(b) n-1/2	(c) 2n-1	(d) n-1.	
		is a special list wh			
7. In		the last nod	e points back to the heade	r node.	
(a) Gre		neader list	(b) Circular header (d) None of the ab	r list	
	ndition (der flow	Front=1 and Rear=N) chec (b) Empty stack	ks for(c) Over flow	(d) Empty Queue	
9. Pre ord	er traver	sal follows			
(a) [Le	eft Right oot Left	Root]	(b) [Root Right Le (d) [Left Root Right		
10. Quick (a) T		n application of (b) Queue	 (c) Stack	(d) List	

/ 2 / CS/MC/AD24

II. Fill up the blanks.

11. The structure imple	ementing selection logic is called
12. The line drawn fro	m a node N to T to a successor is called
13. Accessing each ele	ement once in a data collection A is called
14. In a tree, terminal	node is called
15. In	element can be removed or added at either end but not in middle.

III. Write true or false:

- 16. Algorithm is a step by step list of well defined instructions to solve problems.
- 17. An element with higher priority is processed before any element with lower priority.
- 18. Trees are said to be copies if they are similar.
- 19. Stack is a LIFO list.
- 20. Complexity of insertion sort algorithm at its average case is O(n²).

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2008-09 & thereafter)

SUBJECT CODE: CS/MC/AD24

B. C. A. DEGREE EXAMINATION, APRIL 2011 SECOND SEMESTER

COURSE : MAJOR CORE

PAPER : ALGORITHMS AND DATA STRUCTURES

TIME : 2 ½ HOURS MAX. MARKS: 80

SECTION-B $(8 \times 5 = 40)$

Answer any eight questions:

- 1. Explain the concept of Fibonacci sequence with an algorithm.
- 2. Brief a note on space and time complexity of an algorithm analysis.
- 3. Sort the following numbers using selection sort and write the algorithm.

4. Define binary search and find the Item=41 from the following array.

- 5. Explain the searching operation in a linked list with algorithm.
- 6. Write a note on Insertion and Deletion operation on two way list.
- 7. Explain how stacks are represented using arrays.
- 8. Brief a note on Dequeue.
- 9. Write an algorithm for searching in Binary Search Tree.
- 10. Explain the binary tree representation in memory.

SECTION-C $(10 \times 4 = 40)$

Answer any four questions:

- 11. Discuss on development of an algorithm.
- 12. Write a note on Quick sort. Give example and algorithm.
- 13. Write the different deletion algorithms for linked list. Explain with example.
- 14. Explain Queue and its various operations with an algorithm and example.
- 15. How linear search can be carried out and show it with an algorithm and write the complexity of linear search.
- 16. Discuss on tree traversal.