(1	STELLA MARIS COLLEGE (AUTO For candidates admitted during the aca	ademic year 20		
	B.Sc. DEGREE EXAMINA BRANCH V (a) – PLANT BIOLOGY A	AND PLANT B		
	SIXTH SEM	ESTER		
COURS	-			
PAPER		OINFORMAT		
TIME	: 3 HOURS		MAX. MARK	S: 100
	SECTION	N - A		
I	'ILL IN THE BLANKS:		(6 1	narks)
1.	Maps produced by the cutting of rare r	estriction enzyn	nes are called	
2.	Hash table look up is used in the	algori	hm.	
3.	Chou-Fasman table is used in the pred			
4.	BLOSUM matrices have been constru-			itabase.
5.	An example of a protein structure data			
6.	The full form of KEGG is			
	IULTIPLE CHOICES :			narks)
	Which of these regular expressions will b	e matched by th	e subsequence	
	'EWILYHG"			
		b) E{WY		
	c) Both a and b	d) EW[I	-	
2.	Which of these give an initial penalty for	or gap initiation	and a lower penalty	for gap
	extension			
		b) Affined		
	c) Initiation penalty	d) Extensi	on penalty	
3.	The banding patterns of a chromosome			
	a) Cytogenetic map	b) Genetic n		
	c) Radiation map	d) Recombi		
4.	These served as landmarks in construc		-	genome
	a) Sequence Tagged Sites	b) Conti		
_	c) Single nucleotide polymorphisms		intron boundaries	
5.	Example(s) of super secondary structu			
	a) Beta barrel b) Greek key	c) a and b	d) None of the at	ove
6.	GSS division of GenBank refers to		a a	
	a) Genome Survey Sequences		Sequence Summary	
	c) Gene Split Sequence	d) Gene Sco	oring Scheme	
III. S	TATE WHETHER TRUE OR FALSE	· •	(6 -	narks)
ш. с 1			(01	liar KS)
2	BLOSUM 80 is used highly divergent sequences. Profiles are quantitative as compared to sequence motifs.			
3	Lead compound generally has all the desired properties.			
4	INDELS will always lead to frame shift mutations.			
5	Dynamic programming can be used to find edit distances of two sequences.			
6			ees of the sequence	

..2..

BT/MO/IB64 (**18 marks**)

IV. ANSWER IN 50 WORDS EACH:

- 1. What are NJ trees?
- 2. What are pre clinical and clinical trials in the drug discovery pipeline.
- 3. What are centromeres?
- 4. What is a Ramachandran plot?
- 5. What are DNA chips?
- 6. What are profiles?

SECTION – B ANSWER ANY FOUR NOT EXCEEDING 300 WORDS

(4x6=24)

- 1. What is partial sequencing? How is it used in the mapping of a genome?
- 2. Explain Smith Waterman algorithm.
- 3. Align two sequences RTYA and PTALA using a global alignment approach. Give all possible alignments.
- 4. Discuss the construction of PAM substitution matrix. Why is it also called a log odds matrix?
- 5. How do you normalize scores in BLAST. If you are scoring sequences, which are very related which BLOSUM matrix would you use? Justify your answer. A BLAST hit has an e-value of 0.0. What is its significance?
- 6. Write a short note on any one organism specific database.
- 7. What is DNA computing?

SECTION - CANSWER ANY TWO NOT EXCEEDING 1200 WORDS(2x20=40)

- 1. What is cloning? What are the different cloning vectors used in genome sequencing projects. How is a cDNA library and a cDNA map constructed?
- 2. Write in detail any one method of Tree construction.
- 3. What are the tools/resources used for comparison of two PDB structures. Comment on the principle behind the structure comparison. What are protein structure classification databases?
- 4. Write short notes on
 - a) identification and optimization of lead compounds in a drug discovery pipeline.
 - b. Features of tRNA and its secondary structure prediction.
