STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086. (For candidates admitted during the academic year 2008-09 & thereafter)

SUBJECT CODE: PH/MC/QR64

REG. No._____

B.Sc. DEGREE EXAMINATION APRIL 2013 BRANCH III - PHYSICS SIXTH SEMESTER

COURSE PAPER TIME		R :	QUANTUM MECHANICS AND RELATIVITY 30 MINS. MAX. MARKS: 30 SECTION – A										
TO) BI	E ANSWE	RED 1	IN TH	E QUE	ESTIC)N PA	PER IT	SELF				
Ι		ANSWER ALL QUESTIONS: (30 x 1 = 30) CHOOSE THE CORRECT ANSWER: Light is propagated in small packets or bundles of energy is											
	1.	Light i	s pro	opagat			nall	packets	or			C,	is
		(a) hv			(b) hv/	2		(c) h/	w /w	(d) N	lone of t	hese.	
	2.	The wave associated with material particle is called											
		(a) Sine wave			(b) Square wave			(c) Matter wave (d) T			riangular wave		
	2	Expression for group velocity is											
	3.				·								
		(a) $u = du$	ı/dv		(b) u =	dω/dl	k	(c) v	= dk/d	lω	(d) v =	= dv/du	
	4.	The su	ım (of r	eflectar	ice	and	transm	nission	must	be	equal	to
		(a) E			(b) V ₀			(c) 1			(d) 0.5	5	
	5.	In rectangular potential barrier, the incident wave of energy and height of a potential barrier is											
		(a) $E > V$	0		(b) E= '	V_0		(c) E	$<$ V_0		(d) No	one of the	se.
	6.	No. of	nodes	s and	anti-ı	nodes	of	particle	in (one dir	nensiona	al box	are
		(a) 1,2 res						-		ectively			
		(c) 1,3 res	•	•				(d) N		J			
	7	0 .		1 .	1	,	C			,	C		
	7.	Quantum			-			X-	-			mentum	is
		(a) i $(h/2\pi)$	τ) ∂/∂x			(b) - :	ı(h/2π) ∂/∂x	(c) il	n ∂/∂t	(d) (h	/i) ∂/∂x	
												2.	

8	8. Value of $[\mathbf{L}_{\mathbf{x}}]$, $\mathbf{L_y}$] is								
	(a) $i (h/2\pi)L_z$	(b) ih	Lz	(c) -ihL	(d) –ih					
9	The value of [$[\mathbf{H}, \mathbf{P_x}]$ for a free part	icle is							
	(a) 0	(b) 1	(c) -1	d) i h						
10.	. According to po	ostulates of special the	eory of relative	vity,						
the speed of light in free space										
	(a) increases	(b) remains constant	(c)	changes	(d) decreases					
11	Galilian transfo	rmation equations are								
11.	(a) y'=x-vt, y'=y	•		x'=x-vt, y'=y, z'	=z t'=t					
	(c) z'=y'-vt, y'=y		` '	(d) None of these.						
	(*) = 3 (*) .	,,, .	(3)							
12.	Accelerated fran	mes are called								
	(a) inertial	(b) static frames	(c) non-ine	ertial frames	d) None					
13. The mesons mean life is										
	(a) 3×10^{-5} sec.	(b) $2 \times 10^{-6} \text{ so}$	ec. (c)	2 x 10 ⁻⁵ sec.	(d) $2.5 \times 10^{-6} \text{ sec.}$					
14.	All clocks on th	ne space ship will go s	low by a fact	or						
		(b) $(1-v^2/c^2)^1$	•		(d) None					

15.	-	at rest its internal ene		4						
	(a) mc^2	(b) m_0c^2	(c)	m_0c^4	(d) None of these					
II		Fill in the blanks								
16.	The momentum of a photon, $p =$.									
17.	The electron beam is produced from									

The expectation value for position of the particle, $\langle x \rangle =$ -----.

The mass of the body in motion in given by -----.

18.

19.

20. If the velocity of the body approaches velocity of light, then mass of the body, m = -----.

III State whether true or false

- 21. Davisson and Germer's experiment is the direct conformation for the existence of de-Broglie's waves.
- 22. In stationary orbit, angular momentum of electron is an integral multiple of $h/2\pi$.
- 23. In wave packet, group velocity, v_g will be equal to the particle velocity v.
- 24. Both the time dilation and length contraction occurs in the case of stable particles, called μ mesons.
- 25. In Michelson Morley experiment, the negative result suggests that it is possible to measure the speed of the Earth relative to the Ether.
- 26. The laws of physics are the same in all inertial frame of reference.

IV Give short answer

- 27. Define phase velocity.
- 28. State Newtonian principle of relativity.
- 29. Explain eigen functions and eigen values.
- 30. What is an inertial frame of reference?

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2008-09 & thereafter)

SUBJECT CODE: PH/MC/QR64

B.Sc. DEGREE EXAMINATION APRIL 2013 BRANCH III - PHYSICS SIXTH SEMESTER

COURSE : MAJOR – CORE

PAPER: QUANTUM MECHANICS AND RELATIVITY

TIME : 2 ½ HOURS MAX. MARKS : 70

SECTION – B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 5 = 25)$

- 1. State postulates of quantum mechanics.
- 2. Derive expression for group velocity and obtain the relation between group velocity and wave velocity.
- 3. What is tunnel effect? Describe briefly transmission and reflection coefficients for rectangular potential barrier.
- 4. Explain the normalization process of wave function. How will you find the value of linear momentum operator?
- 5. Find (a) $[\mathbf{H}, \mathbf{P}_{\mathbf{x}}]$ and (b) $[\mathbf{L}_{\mathbf{x}}, \mathbf{x}]$
- 6. Derive length contraction and time dilation in relativity.
- 7. What is the length of a metre stick moving parallel to its length, when its mass is 3/2 of its rest mass.

SECTION - C

ANSWER ANY THREE QUESTIONS:

 $(3 \times 15 = 45)$

- 8.(a) Describe the Davisson Germer experiment and discuss its importance in relation to de-Broglie's hypothesis of matter waves.
 - (b) Calculate the wavelength of associated with an electron subjected to potential difference of 1.25 ky.
- 9. Solve Schrodinger's equation for a particle in dimensional box and its eigen values and eigen functions. Also explain its degeneracy.
- 10.(a) Write the physical meaning of commutations between the operators.
 - (b) Obtain commutation relation between the components of angular momentum and position and
 - (c) Find $[x^n, p_x]$.
- 11. Derive Lorentz transformation equations.
- 12. Derive $E = mc^2$. Find the relation between total energy (E), rest energy (E₀₎ and momentum of the particle (p).
