STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086. (For candidates admitted during the academic year 2008-09 \& thereafter)

SUBJECT CODE : PH/MC/NP64

B.Sc. DEGREE EXAMINATION APRIL 2013
 BRANCH III - PHYSICS
 SIXTH SEMESTER
 REG. No.

COURSE	$:$	MAJOR - CORE
PAPER	$:$	NUCLEAR PHYSICS

TIME : 30 MINS. MAX. MARKS : 30

SECTION - A
TO BE ANSWERED IN THE QUESTION PAPER ITSELF:

ANSWER ALL QUESTIONS:

I. CHOOSE THE CORRECT ANSWER:

1. Nuclear Radius is expressed in
(a) FERMI
(b) Angstorm
(c) Radon
2. The atoms of different element having same mass numbers are called
(a)isobar
(b) isotone
(c)isomer
3. Mass defect is
(a) $\Delta \mathrm{m}=Z m_{p}+N m_{n}-Z^{M^{A}}$
(b) $\Delta \mathrm{m}=\mathrm{A}-\mathrm{Z}$
(c) $\Delta \mathrm{m}=\mathrm{Z}-\mathrm{A}$
4. Positive rays carry \qquad charge
(a) Positive
(b) negative
(c) Zero
5. Positron is antiparticle for
(a) electron
(b) Proton
(c) neutron
6. In Nuclear reaction ${ }_{5} \mathrm{~B}^{10}+{ }_{2} \mathrm{Ne}^{4} \rightarrow{ }_{7} \mathrm{H}^{13}+\mathrm{X}$. X is
(a) neutron
(b) electron
(c) Proton
7. Law of Radioactive decay is
(a) $\mathrm{N}=N_{o e^{-\lambda t}}$
(b) $\mathrm{N}=\mathrm{No}$
(c) $\Rightarrow \mathrm{N}=\mathrm{e}^{\lambda \mathrm{t}}$
8. In Nuclear reaction ${ }_{92} \mathrm{U}^{238} \rightarrow_{90} \mathrm{Th}^{234}+\mathrm{Y}, \mathrm{Y}$ is
(a) oparticle
(b) β particle
(c) γ-particle
9. The energy equivalent of mass unit is
(a) 931.49 Mev
(b) 900 Mev
(c) 800 Mev
10. Half life $\mathrm{T}^{1 / 2}=$
(a) . $693 / \lambda$
(b) . $693 / \lambda 1 / 2$
(c) $.693 \lambda$
11. Energy released in fission is
(a) 330 Mev
(b) 200 Mev
(c) 50 Mev
12. The energy released in fusion is
(a) 25.7 Mev
(b) 100 Mev
(c) 50 Mev
13. In the process in which reaction charge is conserved?
(a) $n \rightarrow p^{+} \Pi^{-}$meson
(b) $p \rightarrow \mathrm{n}^{-} \Pi^{-}$
(c) $n \rightarrow p$
14. Nuclear force is
(a) Short range
(b) gravitational
(c) Long range
15. In cyclotron frequency of revolution of a particle is
(a) $\mathrm{Bq} / 2 \Pi \mathrm{~m}$
(b) $2 \mathrm{~Bq} / 3 \Pi \mathrm{~m}$
(c) $\mathrm{Bq} / 4 \Pi \mathrm{~m}$

II. FILL IN THE BLANKS:

16. $\quad{ }_{5} \mathrm{~B}^{10}+{ }_{0} \mathrm{n}^{1} \rightarrow 3^{L i^{7}}+$ \qquad
17. Moderator is used to \qquad
18. Unit of Radioactivity is \qquad
19. NMR is \qquad
20. Neutron is a \qquad
III. STATE TRUE OR FALSE:
21. $\quad \operatorname{In}_{Z} X^{A}, A$ is mass number.
22. Synchrotron is frequency modulated cyclotron.
23. The fission produces 3 neutrons.
24. $\mathrm{K}=1$ is called critical state
25. B.E. is defined as Binding Energy.

IV ANSWER BRIEFLY:

26. What are magic numbers?
27. Distinguish between β and γ ray.
28. What is fission?
29. Explain chemical shift.
30. What is Geiger Muller counter?

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086. (For candidates admitted during the academic year 2008-09 \& thereafter)

SUBJECT CODE : PH/MC/NP64

B.Sc. DEGREE EXAMINATION APRIL 2013
 BRANCH III - PHYSICS
 SIXTH SEMESTER
 MAX. MARKS : 70

COURSE : MAJOR - CORE
PAPER : NUCLEAR PHYSICS
TIME : $2 ½$ HOURS

SECTION - B

ANSWER ANY FIVE QUESTIONS:

1. Calculate binding energy per nucleon in ${ }_{6} \mathrm{C}^{12}$, masses of proton, and neutron are $1.007276,1.008665 \mathrm{amu}$. The mass of ${ }_{6} \mathrm{C}^{12}$ atom is 12.0000 amu .
2. The disintegration constant of radioactive element is .00231 per day, calculate its half life and average life.
3. Calculate time required for 10% of sample of Thorium to disintegrate Assume half life of Thorium to be 1.4×10^{10} years.
4. Compare alpha, Beta and γ - rays.
5. Write note on Radioactivity.
6. Discuss Q-value of Nuclear reactions.
7. Distinguish fission and fusion with examples.

SECTION C

ANSWER ANY THREE QUESTIONS:
8. a) Explain liquid drop model and shell model of nucleus.
b) Give evidences for shell model.
9. Explain (a) Radioactive series.
(b) Geiger Nuttals law.
(c) Units of Radioactivity.
10. Give the construction and working of GM counter.
11. Explain a Nuclear Reactor with a neat diagram explain the parts and working of a Nuclear reactor.
12. Write note on NMR and NQR spectroscopy.

