STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086
 (For candidates admitted from the academic year 2011-12 \& thereafter)

SUBJECT CODE : 11MT/PE/TS24

M. Sc. DEGREE EXAMINATION, APRIL 2013
 BRANCH I - MATHEMATICS
 SECOND SEMESTER

COURSE	$:$ ELECTIVE
PAPER	$:$ TENSOR ANALYSIS AND SPECIAL THEORY OF RELATIVITY
TIME	$: 3$ HOURS

SECTION -A
Answer all the questions:
$5 \times 2=10$

1. Define a tensor of rank greater than two.
2. Define covariant derivative.
3. Define stress.
4. State Einstein's principle of relativity.
5. Define proper time interval.

SECTION -B

Answer any five questions:

 $5 \times 6=30$6. Show that $\frac{\partial A_{p}}{\partial x^{q}}$ is not a tensor even though A_{p} is a covariant tensor of rank one.
7. If $\varphi=a_{j k} A^{j} A^{k}$ show that we can always write $\varphi=b_{j k} A^{j} A^{k}$ where $b_{j k}$ is symmetric.
8. Express the divergence of a vector A^{p} interms of its physical components for spherical coordinates.
9. Prove that \sqrt{g} is a relative tensor of weight one.
10. If the covariant force acting on a particle is given by $F_{k}=\frac{-\partial V}{\partial x^{k}}$ where $V\left(x^{1}, \ldots, x^{N}\right)$ is the potential energy, show that $\frac{d}{d t}\left[\frac{\partial L}{\partial x^{k}}\right]-\frac{\partial L}{\partial x^{k}}=0$ where $L=T-V$.
11. Describe a Galilean transformation.
12. Explain law of the addition of velocities.

SECTION -C

Answer any three questions:

13. a) Determine the conjugate metric tensor in (a) cylindrical and (b) spherical coordinates.
b) Show that any inner product of the tensors A_{r}^{p} and $B_{t}^{q s}$ is a tensor of rank three.
14. a) Derive transformation laws for the Christoffel symbols of the first and second kind.
b) Define Geodesics in Riemannicm space and prove that $\frac{d^{2} x^{r}}{d s^{2}}+\left\{\begin{array}{c}r \\ p q\end{array}\right\} \frac{d x^{p}}{d s} \frac{d x^{q}}{d s}=0$.
15. a) Define work and energy in tensor form.
b) Derive the Lagrange's Equation for a force system to be conservative.
16. a) Explain Newtonian Principle.
b) Define Frame of reference, coordinate transformation and explain force low and its transformation properties.
17. a) Derive Lorentz Transformation equations and obtain its inverse.
b) Explain Einstein's clock paradox.
