STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086

(For candidates admitted from the academic year 2011-12 & thereafter)

SUBJECT CODE: 11MT/PE/FT24

M. Sc. DEGREE EXAMINATION, APRIL 2013 BRANCH I – MATHEMATICS SECOND SEMESTER

COURSE : ELECTIVE

PAPER : FUZZY SET THEORY

TIME : 3 HOURS MAX. MARKS: 100

SECTION -A

Answer all the questions:

 $5 \times 2 = 10$

- 1. Define α cut and strong α cut of a fuzzy set and state any one of the properties of the α cut of a fuzzy set A.
- 2. Define a normal fuzzy relation and give an example.
- 3. Define Yager class of fuzzy complements.
- 4. Define a fuzzy number.
- 5. Illustrate any application of fuzzy logic in day today life.

SECTION -B

Answer any five questions:

5×6=30

- 6. Discuss the fuzzy equation +X = B.
- 7. Let $f: X \to Y$ be an arbitrary crisp function. Then, for any $A \in \mathcal{F}(X)$, prove that f fuzzified by the extension principle satisfies the equation $f(A) = \bigcup_{\alpha \in [0,1]} f(\alpha + A)$
- 8. Prove that every fuzzy complement has at most one equilibrium.
- 9. Find A + B and A B if A and B are fuzzy numbers given by

$$A(x) = \begin{cases} 0 & for \ x \le -1 \ and \ x > 3 \\ (x+1)/2 & for \ -1 < x < 1 \\ (3-x)/2 & for \ 1 < x \le 3, \end{cases}$$

$$B(x) = \begin{cases} 0 & for \ x \le 1 \ and \ x > 5 \\ (x-1)/2 & for \ 1 < x \le 3 \\ (5-x)/2 & for \ 3 < x \le 5. \end{cases}$$

- 10. Explain the different methods for designing fuzzy control rules.
- 11. Represent the concept of "middle aged person" by a fuzzy set using trapezoidal membership function, considering the persons with age between 35 and 45 as middle aged persons.
- 12. Prove that a fuzzy set A is convex if and only if $A(\lambda x_1 + (1-\lambda)x_2) \ge \min[A(x_1), A(x_2)]$.

SECTION -C

Answer any three questions:

 $3 \times 20 = 60$

- 13. (a) Explain the standard operations of union, intersections, complements of fuzzy sets with examples.
 - (b) Let $A, B \in \mathcal{F}(X)$. Then prove that the following the statements hold for all $\alpha, \beta \in [0, 1]$.

(i)
$${}^{\alpha}(A \cap B) = {}^{\alpha}A \cap {}^{\alpha}B$$
 and ${}^{\alpha}(A \cup B) = {}^{\alpha}A \cup {}^{\alpha}B^{\alpha}$

(ii)
$$\alpha(\bar{A}) = {}^{(1-\alpha)+}\bar{A}$$

- 14. (a) Let $f: X \to Y$ be an arbitrary crisp function. Then, for any $A \in \mathcal{F}(X)$, and all $\alpha \in [0, 1]$, prove that the following properties of f fuzzified by the extension principle hold.
 - (*i*). $^{\alpha+}[f(A)] = f(^{\alpha+}A)$.
 - (ii). $\alpha[f(A)] \supseteq f(\alpha A)$.

Also prove that equality in (ii) does not hold in general.

- (b) Explain fuzzy relational equations.
- 15. Given a t-norm i and an involutive fuzzy complement c, prove that the binary operation u on [0,1] defined by u(a,b)=c(i(c(a),c(b))), for all $a,b \in [0,1]$ is a t-conorm such that (i,u,c) is a dual triple.
- 16. Let * denote any of the four basic arithmetic operations namely +, -, . , / and let A and B denote continuous fuzzy numbers. Then prove that the fuzzy set A * B defined by $(A * B)(x) = \sup_{z=x*y} \min [A(x), B(y)]$ is a continuous fuzzy number.
- 17. Discuss the applications of fuzzy theory in industries.