STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted from the academic year 2011-12 & thereafter)

SUBJECT CODE : 11MT/PC/TO24

M. Sc. DEGREE EXAMINATION, APRIL 2013 BRANCH I – MATHEMATICS SECOND SEMESTER

COURSE	: CORE
PAPER	: TOPOLOGY
TIME	: 3 HOURS

MAX. MARKS : 100

SECTION – A

Answer all the questions:

5×2=10

- 1. Define nowhere dense set.
- 2. Define limit point of a set.
- 3. Define Bolzano-Weierstrass property.
- 4. Define a Hausdorf space.
- 5. Is every connected space locally connected? Justify your answer.

SECTION – B

Answer any five questions:

- 6. If X and Y are metric spaces and f is a mapping of X into Y, then show that f is continuous if and only if $f^{-1}(G)$ is open in X whenever G is open in Y.
- 7. If X is a topological space and $A \subseteq X$, then prove that $x \in \overline{A}$ if and only if every neighbourhood of x intersects A.
- 8. Show that a closed subspace of a compact space is compact.
- 9. State and prove Lebesgue's covering lemma.
- 10. Show that every compact Hausdorff space is normal.
- 11. Prove that the continuous image of connected space is connected.
- 12. If *A* is a connected subspace of a topological space *X* and *B* is a subspace of *X* such that $A \subseteq B \subseteq \overline{A}$, then show that *B* is connected.

5×6=30

SECTION – C

Answer any three questions:

3×20=60

- 13. a) State and prove the Baire's Theorem.
 - b) If X and Y are metric spaces and f is a mapping of X onto Y, then prove that f is continuous at x_0 if and only if $x_n \to x_0 \Rightarrow f(x_n) \to f(x_0)$.
- 14. a) Show that every second countable space is separable but not conversely.
 - b) If $f: X \to Y$ be a function from a topological space into a topological space, then prove that f is continuous if and only if $f^{-1}(K)$ is closed for each closed K in Y.
- 15. a) State and prove Heine Boral theorem.
 - b) State and prove Tychonoff theorem.
- 16. State and prove Urysohn's lemma.
- 17. a) Show that a subspace of the real line is connected if and only if it is an interval.
 b) Prove that Rⁿ and Cⁿ are connected.
