STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

(For candidates admitted from the academic year 2011-12)
SUBJECT CODE: 11MT/PC/PD44
M. Sc. DEGREE EXAMINATION, APRIL 2013

BRANCH I - MATHEMATICS
FOURTH SEMESTER

COURSE : CORE
 PAPER : PARTIAL DIFFERENTIAL EQUATIONS
 TIME : 3 HOURS

MAX. MARKS : 100

SECTION - A

ANSWER ALL THE QUESTIONS

1. Formulate the partial differential equation by eliminating the arbitrary constants a and b from $\mathrm{z}=\mathrm{x}+a x^{2} y^{2}+\mathrm{b}$
2. Mention the three classifications of the $2^{\text {nd }}$ order partial differential equation $R r+S s+$ $T t+f(x, y, z, p, q)=0$ based on the conditions on the functions R, S and T .
3. State the boundary value problem of the first kind.
4. Write down the three dimensional diffusion equation in cylindrical coordinates.
5. State the Green's identity.

SECTION - B

ANSWER ANY FIVE QUESTIONS ONLY

6. Eliminate the arbitrary function f from the relation $\mathrm{z}=\mathrm{xy}+f\left(x^{2}+y^{2}\right)$.
7. Using Charpit's method, solve the partial differential equation $\left(p^{2}+q^{2}\right) y=q z$.
8. Show that $\mathrm{u}=f(x-v t+i \alpha y)+g(x-v t-i \alpha y)$ is a solution of $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=$ $\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}$ provided $\alpha^{2}=1-\frac{v^{2}}{c^{2}}$.
9. Solve the equation $\frac{\partial^{3} z}{\partial x^{3}}-2 \frac{\partial^{3} z}{\partial x^{2} \partial y}-\frac{\partial^{3} z}{\partial x \partial y^{2}}+2 \frac{\partial^{3} z}{\partial y^{3}}=e^{x+y}$.
10. Show that the two dimensional Laplace equation $\nabla_{1}^{2} V=0$, in the plane polar coordinates r and θ has the solution of the form $\left(A r^{n}+B r^{-n}\right) e^{ \pm i n \theta}$ where A and B are constants.
11. State transmission line problem with special reference to current loss in a cable of length l carrying current with resistance R , inductance L , capacitance C and leakance G . Derive the Telephone and Telegraph equations.
12. By separating the variables, show that the one dimensional wave equation $\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}$ has solution of the form $A e^{ \pm i n x \pm i n c t}$.

SECTION - C
 ANSWER ANY THREE QUESTIONS ONLY

$(3 \times 20=60)$
13. a. Use Jacobi's method to solve $\left(p^{2} x+q^{2} y\right)=z$.
b. Find the surface which is orthogonal to the one parameter system $\mathrm{z}=c x y\left(x^{2}+y^{2}\right)$ and which passes through the hyperbola $\left(x^{2}-y^{2}\right)=a^{2}, z=0$.
14. a. Solve $\nabla_{1}^{2} z=e^{-x} \cos y$, which tends to zero as $x \rightarrow \infty$ and has the value $\cos y$ when $x=0$.
b. Reduce the equation $(n-1)^{2} u_{x x}-y^{2 n} u_{y y}=n y^{2 n-1} u_{y}$ to a canonical form and find its general solution, where $\mathrm{n}>1$.
15. a. Express the Laplace equation in cylindrical coordinates and derive the general solution of the same.
b. State and prove the Maximum-Minimum principle.
16. a. State and derive D'Alembert solution of one dimensional wave equation.
b. A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially in a position given by $y=y_{0} \sin ^{3}\left(\frac{\pi x}{l}\right)$. It is released from rest from this position. Find the displacement $y(x, t)$.

