STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011-12 & thereafter)

SUBJECT CODE: 11MT/PC/MI24

M. Sc. DEGREE EXAMINATION, APRIL 2013 **BRANCH I – MATHEMATICS** SECOND SEMESTER

COURSE : CORE

: MEASURE THEORY AND INTEGRATION PAPER

TIME : 3 HOURS **MAX. MARKS: 100**

SECTION - A

Answer all the questions:

 $5 \times 2 = 10$

- 1. Prove that the outer measure is translation invariant.
- 2. Show that if $m^*(A) = 0$, then $m^*(A \cup B) = m^*(B)$.
- 3. Define: Ring, σ ring, outer measure.
- 4. Prove that a countable union of sets positive with respect to a signed measure v is a positive set.
- 5. Define: Rectangle, measurable rectangle, unit sphere R^k .

SECTION - B

Answer any five questions:

 $5 \times 6 = 30$

- 6. For any sequence of sets, $\{E_i\}$, prove that $m^*(\cup E_i) \leq \sum m^*(E_i)$
- 7. Show that for any set A and any $\varepsilon > 0$, there is an open set O containing A and such that $m^*(O) \leq m^*(A) + \varepsilon$.
- 8. IF f and g are integrable functions then prove that
 - i) αf is integrable and $\int \alpha f dx = \alpha \int f dx$
 - ii) f + g is integrable and $\int (f + g) dx = \int f dx + \int g dx$.
 - iii) If $f \le g$ a.e., then $\int f dx \le \int g dx$.
- 9. Let f = g a.e (μ) , where μ is a complete measure. Show that if f is measurable, so is g.
- 10. Show that the following conditions on the signed measures $\mu \& v$ on

[[X , S]] are equivalent:

- i) $v \ll \mu$
- ii) $|v| \ll |\mu|$ iii) $v^+ \ll \mu$ iv) $v^- \ll \mu$

- 11. Show that there are uncountable sets of measure zero.
- 12. Prove that the class of elementary sets ξ is an algebra.

SECTION - C

Answer any three questions:

 $3 \times 20 = 60$

- 13. a) Show that every non-empty open set has positive measure.
 - b) Let the rationals \mathbb{Q} enumerated as q_1, q_2, q_3, \dots and the set G is defined by $G = \bigcup_{n=1}^{\infty} \left(q_n \frac{1}{n^2}, \ q_n + \frac{1}{n^2} \right), \text{ prove that for any closed set } F, m(G\Delta F) > 0.$
- 14. a) Let $\{E_i\}$ be a sequence of measurable sets, Then prove:
 - i) if E_1 contained in E_2 contained in E_3 ,... we have $m(\lim E_i) = \lim m(E_i)$.
 - ii) If E_1 contains E_2 contains E_3 ... & $m(E_i) < \infty$ for each i, then we have $m(\lim E_i) = \lim m(E_i)$.
 - b) State and prove Lebesgue's Dominated Convergence Theorem.
- 15. If μ is a measure on a σ ring \mathcal{S} , then the class $\bar{\mathcal{S}}$ of sets of the form $E\Delta N$. For any sets E, N such that $E \in \mathcal{S}$ while N is contained in some set in \mathcal{S} of zero measure, is a σ ring, and the set function μ defined by $\mu(E\Delta N) = \mu(E)$ is a complete measure on $\bar{\mathcal{S}}$.
- 16. Let v be a signed measure on [[X, S]] . Then prove that there exists unique measures $v^+ & v^- on [[X, S]]$ such that $v = v^+ v^-$ and $v^+ \perp v^-$.
- 17. Let $[[X, S, \mu]]$ and $[[Y, \Im, v]]$ be σ finite measure spaces. For $V \in S \times \Im$ write $\varphi(x) = v(V_x), \Psi(y) = \mu(V^y)$, for each $x \in X, y \in Y$. Then prove that φ us S measureable, Ψ is \Im measureable and $\int_X \varphi d\mu = \int_Y \Psi dv$.

