STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011–12)

SUBJECT CODE: 11MT/PC/FA44

M. Sc. DEGREE EXAMINATION, APRIL 2013 BRANCH I – MATHEMATICS FOURTH SEMESTER

COURSE : CORE

PAPER : FUNCTIONAL ANALYSIS

TIME : 3 HOURS MAX. MARKS : 100

SECTION—A (5x2=10) ANSWER ALL THE QUESTIONS

- 1. Prove that $||x + y||_p \le ||x||_p + ||y||_p$
- 2. State and prove Schwarz inequality.
- 3. If *T* is an operator on *H* then prove that *T* is normal if and only if its real and imaginary parts commute.
- 4. Define the determinant.
- 5. Define Banach algebra.

SECTION—B (5x6=30) ANSWER ANY FIVE QUESTIONS

- 6. State and prove open mapping theorem
- 7. If M and N are closed linear subspaces of a Hilbert space H such that $M \perp N$, then prove that the linear subspace M+N is also closed.
- 8. Let $\{e_1, e_2, ..., e_n\}$ be a finite orthonormal set in a Hilbert space H. If x is any vector in H, then prove that $\sum_{i=1}^{n} |(x, e_i)|^2 \le ||x||^2$; and also prove that $x \sum_{i=1}^{n} (x, e_i) e_i \perp e_j$ for each j.
- 9. If *P* is a projection on *H* with range *M* and null space *N*, then prove that $M \perp N$ if and only if *P* is self-adjoint and $N = M^{\perp}$.
- 10. If N_1 and N_2 are normal operators on H with the property that either commutes with the adjoint of the other then prove that N_1+N_2 and N_1N_2 are normal.
- 11. Prove that two matrices in A_n are similar if and only if they are the matrices of a single operator on H relative to different bases.
- 12. Prove that the set G is regular elements of Banach algebra A is open.

SECTION—C (3x20=60) ANSWER ANY THREE QUESTIONS

- 13. State and prove Hahn-Banach theorem.
- 14. a) Let H be a Hilbert space, and let $\{e_i\}$ be an orthonormal set in H. Prove that the following conditions are all equivalent to one another
 - (i) $\{e_i\}$ is complete.
 - (ii) $x \perp \{e_i\} \Rightarrow x = 0$
 - (iii) if x is an arbitrary vector in H, then $x = \sum (x, e_i)e_i$;
 - (iv) if x is an arbitrary vector in H, then $||x||^2 = \sum |(x, e_i)|^2$.
 - b) If $\{e_i\}$ is an orthonormal set in a Hilbert space H, and if x is an arbitrary vector in H then prove that $x \sum (x, e_i) e_i \perp e_j$ for each j.
- 15. a) Prove that the adjoint operation $T \to T^*$ on B(H) has the following properties:
 - (i) $(T_1 + T_2)^* = T_1^* + T_2^*$ (ii) $(\alpha T)^* = \alpha T^*$ (iii) $T_1 T_2^* = T_2^* T_1^*$ $(iv)T^{**} = T$ $(v)\|T^*\| = \|T\|$ $(vi)\|T^*T\| = \|T\|^2$
 - b) If T is an operator on H for which (Tx,x)=0 for all x then prove that T=0.
- 16. State and prove the Spectral theorem.
- 17. a) If the regular elements of a Banach algebra A are denoted by G then prove that the mapping $x \to x^{-1}$ of G into G is continuous and is a homeomorphism of G onto itself.
 - b) Prove that the boundary of the set of all singular elements *S* is a subset of the set all topological divisors of zero *Z*.