STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011-12)

SUBJECT CODE : 11MT/PC/DG44

M. Sc. DEGREE EXAMINATION, APRIL 2013 BRANCH I – MATHEMATICS FOURTH SEMESTER

COURSE	:	CORE
PAPER	:	DIFFERENTIAL GEOMETRY
TIME	:	3 HOURS

MAX. MARKS: 100

SECTION – A

(5 X 2 = 10)

ANSWER ALL QUESTIONS :

- 1. Define parameterised curve in \mathbb{R}^n .
- 2. Define a smooth surface.
- 3. When is a map said to be conformal?
- 4. Define geodesic curvature.
- 5. Define Gaussian curvature.

SECTION – B

ANSWER ANY FIVE QUESTIONS :

- 6. If γ is a unit-speed curve in \mathbb{R}^3 with constant curvature and zero torsion then prove that γ is a circle.
- Given U and U
 are open subsets of R² and σ: U → R³ is a regular surface patch and φ: U
 → U a bijective smooth map with smooth inverse map φ⁻¹: U
 → U then show that σ
 = σ ∘ φ: U
 → U
 is a regular surface patch.
- 8. If $\sigma: U \to \mathbb{R}^3$ be a patch of a surface *S* containing a point *P* of *S* and (u, v) are coordinates in *U*, then prove that the tangent space to *S* at *P* is the vector subspace of \mathbb{R}^3 spanned by the vectors σ_u and σ_v .
- 9. Prove that $\|\sigma_u \times \sigma_v\| = (EG F^2)^{1/2}$.
- 10. Show that any tangent developable is isometric to a plane.
- 11. Obtain the second fundamental form for the surface of revolution

 $\sigma(u,v) = (f(u)\cos v, f(u)\sin u, g(u)).$

12. If $\sigma(u, v)$ be a surface patch with first and second fundamental forms then prove that

$$K = \frac{LN - M^2}{EG - F^2}.$$

(5 X 6 = 30)

11MT/PC/DG44

SECTION – C

ANSWER ANY THREE QUESTIONS :

(3 X 20 = 60)

- 13. a) Show that a parameterised curve has a unit-speed reparametrisation if and only if it is regular.
 - b) Prove that the curvature of a regular curve $\gamma(t)$ is \mathbb{R}^3 is

$$k = \frac{\|\ddot{\gamma} \times \dot{\gamma}\|}{\|\dot{\gamma}\|^3}$$
 where $I = \frac{d}{dt}$.

- 14. a) Explain the concept of a smooth map.
 - b) If $f: S_1 \to S_2$ be a diffeomorphism and σ_1 is an allowable surface patch on S_1 , then show that $f \circ \sigma_1$ is an allowable surface patch on S_2 .
- 15. Prove that a diffeomorphism $f: S_1 \to S_2$ is an isometry if and only if, for any surface patch σ_1 of S_1 , the patches σ_1 and $f \circ \sigma_1$ of S_1 and S_2 respectively, have the same first fundamental form.
- 16. a) State and prove Meusnier's theorem.
 - b) State and prove Euler's theorem.
- 17. Show that any point of a surface of constant Gaussian curvature is contained in a patch that is isometric to part of a plane, a sphere or a pseudo sphere,

....