STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086

(For candidates admitted from the academic year 2008-09)

SUBJECT CODE: CH/MC/PC64

B.Sc. DEGREE EXAMINATION, APRIL 2011 BRANCH IV - CHEMISTRY SIXTH SEMESTER

					Reg. No				
COURSE PAPER TIME	PER : PHYSICAL CHEMISTRY - III			X. MARKS : 30					
SECTION – A TO BE ANSWERED ON THE QUESTION PAPER ITSELF.									
ANSWER ALL THE QUESTIONS. I. Choose the correct answer:					(30x1=30)				
					$(10 \times 1 = 10)$				
1. As the ten	nperature i	ncreases, the reacti	on rate						
a) decrea	ses and the	en increases b)		c) increases	d) stays the same				
2. Adsorbate									
					lsorption takes place				
*	-			d) none of t	hese				
		drogen on charcoa		1	1) f. (1				
	•		•	•	d) none of these				
		es, the degree of di	ssociation is		ono				
=	equal to ze			b) nearly equal to					
	equal to in	<u> </u>		d) nearly equal to					
a) decrea	-	ture, the conductar b) increases		ins constant	<u>-</u>				
,		aw is applicable to	C) Tellia	ilis Colistalit	d) leaches zero value				
		b) strong electro	olyte c	week electrolyte	d) non- electrolyte				
	-	as a coating on ste	•	•	d) non- electroryte				
a) Sodiur		b) Calcium		Potassium	d) Zinc				
,		ing can be used to			d) Zinc				
		b) a concentrat	•		rode d) all of these				
		nd Sr exhibit	ion cen e) a ny arogen ereet	ay an or mose				
-	ıminescen		ence c) phosphorescence	d) none of these				
· ·		first order process) phosphorescence	a) none of these				
		actant concentratio	n raised to th	ne first power					
		ortional to the squar		-					
	•	rtional to the reacta							
		dent of the reactant							

/2/ CH/MC/PC64

 II. Say True or False: 11. In a galvanic cell, reduction occurs at the 12. The salt bridge maintains the electrical not 13. It is the secondary reaction in which absorbed. 14. The rate constant for a reaction depends of 15. Increase in surface area of the adsorbent gas adsorbed. 	eutrality in each half cell. orption of radiation takes place. upon the nature of reactant.	(5 X 1= 5)
 17. The rate determining step 18. One Faraday 19. Alkaline hydrolysis of an ester) 96500 coulombs) second order reaction) physical adsorption d) Hittorf's method e) the slowest reaction	$(5 \times 1 = 5)$
 IV. Fill in the blanks: 21. In chromatographic analysis, the principle 22. The unit of equivalent conductance is 23. The emission of light as a result of chemical 24. The species that are formed in one step of in another step are called 25. When a strong acid is titrated against a strong point of conductance 	ical reaction is called f reaction mechanism and used up trong base, the end point is the	
V. Answer in a line or two: 26. Define over voltage.		$(5 \times 1 = 5)$
27. Write Henderson- Hasselbalch equation.		
28. Define half- life period.		
29. Write Nernst equation.30. Define degree of dissociation.		
20. 20 mile degree of dissociation.		

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086

(For candidates admitted from the academic year 2008-09)

SUBJECT CODE: CH/MC/PC64

(5x6=30)

B.Sc. DEGREE EXAMINATION, APRIL 2011 BRANCH IV - CHEMISTRY SIXTH SEMESTER

COURSE : MAJOR - CORE

PAPER : PHYSICAL CHEMISTRY - III

TIME : 2 ½ HOURS MAX. MARKS: 70

SECTION - B

ANSWER ANY FIVE QUESTIONS:

- 1. Explain Lindemann's theory of unimolecular reactions.
- 2. Discuss Freundlich adsorption isotherm of a gas on a solid surface.
- 3. State and explain Ostwald's dilution law. Can this law be applied to the dissociation of HCl in aqueous solution?
- 4. Describe the construction and working of calomel electrode.
- 5. State the principle of conductometric titrations. Draw the titration curve for weak acid with a strong base.
- 6. Derive liquid junction potential.
- 7. Explain photosensitization with an example.

SECTION - C

ANSWER ANY TWO QUESTIONS:	(2x20=40)
8. (a) Derive the rate constant for a first order reaction.	(5)
(b) Explain the use of polarimetry in the study of kinetics.	(5)
(c) Distuinguish between physical adsorption and chemisorption.	(5)
(d) What are consecutive reactions? Explain with an example.	(5)
9. (a) Discuss the photolysis of aldehydes and ketones.	(5)
(b) Explain the theory of absolute reaction rates.	(10)
(c) How will you calculate Arrhenius parameters?	(5)
10. (a) Explain the Debye-Huckel theory of strong electrolytes.	(5)
(b) Discuss the applications of Kohlrausch's law.	(10)
(c) Write the importance of electrochemical series.	(5)

$K_{\rm sp}$ value for CuBr.	(5)
	· /
(b) Give an example for electrolytic cell with transference. Write the cell	
reaction and the expression for the emf of this cell.	(5)
(c) Explain the working of Lead storage battery.	(5)
(d) Deduce an expression for the degree of hydrolysis of a salt of a weak	
acid and a strong base.	(5)
