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Abstract

We consider dynamical systems in which a (typically vector-valued)
dependent variable evolves according to autonomous dynamics switch-
ing randomly according to Markovian laws that change with the value
of the dependent variable. Such systems are known as “random evo-
lutions” or, in electrical engineering contexts, as “switching systems”.
Systems of this type are encountered in applications from electrical
engineering to cell biology (our paper was inspired by a recent model
for genetic oscillators). We review the derivation of the forward Kol-
mogorov master equations for the probabilities to find the system in
a certain state at some time. In the limit of an infinite switching rate
solutions of our system converge almost surely to solutions of an av-
eraged problem. The classical tool of a Chapman-Enskog expansion,
well-known from kinetic theory, provides diffusion approximations to
first order in the scale parameter. Our work focusses on a few typical
examples. The analysis is formal, but we expect that the results hold
rigorously in analogy to earlier results from kinetic theory (see [11]).
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A Prologue for Helmut Neunzert

In 1976, as a young man who had just completed the Ph.D., Helmut Neunzert
hired me (R.I.) for my first real academic job, at the then still very young
University of Kaiserslautern. It was the beginning of 9 years of interaction on
kinetic theory and applied mathematics, and of a lifetime friendship. Helmut
directed me towards the Boltzmann equation and its mysteries, an area which
would define my career.

One of the early things I remember vividly was Helmut’s statement “we
need to pay more attention to probability theory.” As a man of action, he
did not just leave it with this statement; he set out to teach intermediate
and advanced courses on probability and stochastic processes, courses which
I, our visiting colleague Ivan Kuscer and many of our students attended.
Helmut had astutely observed that kinetic theory could be approached by
using PDEs or Probability, and that there were researchers in either camp,
but the communication between these camps was rather tenuous (fortunately,
while this was true then, it is not true anymore in 2012). At the biannual
Oberwolfach conferences on kinetic theory, Helmut made an effort to invite
representatives from either camp, with good long-term results.

I remembered all these things as I began working on modelling problems
in cell biology some 8 years ago. Again, probability loomed large in the
application we had targeted (namely, an explanation of the possible origin
of circadian rhythms at the cellular level; see [4]). While we succeeded, I
felt that a more systematic treatment of the context was in order. Such a
treatment was provided by Michele De La Chevrotiere, in [2]. (Incidentally,
Michele became a graduate student at the University of Victoria upon a
recommendation by none other than Helmut Neunzert.) Since then, the
context has become known to us as the theory of random evolutions, and
while this theory has been known for several decades [6], its applicability to
engineering, biology and finance, and its affinity to the kinetic theory toolbox
call for a review of the concept. This is the rationale for this paper.
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1 Introduction

The article [4] (see also [7] and [2]) introduced the dynamical system

Rll = k’11(1 - ]1) - k1zR1

Pl = k3R, — kP — 2ki5 P} + 2k16 Dy
Dy = kisP} — kgD

RIQ - klljl - leRZ

Py = kosRy — koyPy — 2kos Py + 2kog Dy
Dy = kysP? — koygDs

w N

=~
N e e N N N

)
6

N N N N /N /N

as a model for a transcriptional-translational oscillator (TTO) in cell biology.
Here, X = (Ry, P1,..., D) € Rﬁ. The variables Ry and R are numbers (or
fractions) of messenger RNA (mRNA) molecules transcribed by two genes
(sites on the DNA strand); they are produced at rates ki; while the random
variables I, and J; take values 0 and 1, respectively. R; and Ry have bio-
logical half-lives (hence the decay terms), but while they exist they translate
raw materials into the proteins P, and P». These proteins combine further
to form homodimers D; and D,. Furthermore, the homodimers attach to
the sites where R; and Ry are transcribed, and such that Dy inhibits the
transcription of Ry while D; activates the transcription of Ry. See Figure 1.

This TTO example assumes that the DNA sites transcribe mRNA
molecules one at a time while the site is active. The formation of the proteins
and homodimers are governed by the laws of mass action, and each of these
compounds also has a biological half-life. The parameters ki1, k1o, . . . kog de-
termine the rates of these chemical reactions or decay of compounds; see [4]
for possible numerical values.

There is no coupling between the equations for Ry, P;, D1 and Ry, Py, D>
except possibly through the laws of the random variables Iy, J;, and this is
exactly how coupling arises: it is assumed that there are constants Ay, A\; and
a scaling parameter € > 0 (to be thought of as small but fixed) such that

Prob{I, =0 in (t,t+ h)|[;(t) =0} = 1— (AeDa(t)h/€) + o(h), (7)
Prob{l; =1 in (t,t+ h)|[1(t) =1} = 1—(\h/e)+o(h) (8)

and similarly for J;
Prob{Jy =0 in (t,t+h)|i(t) =0} = 1— (uoDi(t)h/€e)+o(h), (9)
Prob{J; =1 in (t,t+h)|Ji(t) =1} = 1— (wh/e)+ o(h). (10)

In other words, the switching rates of I} from 0 to 1 at time ¢ are
(Mo/€)Ds(t),  (because Prob{Ii(t+ h) = 1|1,(t) = 0} = X\oD2(t)h/e + o(h))

Indian Journal of Industrial and Applied Mathematics
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Figure 1: Cartoon of a TTO.

and from 1 to 0, A;/e. Again, the parameter € should here be thought of
as fixed while h is a variable.

Note that the first rate depends on Dy (t) (consistent with the assumption
that the first gene is inhibited by D). A similar interpretation applies to
the rules governing J;. We refer to [4] and the references therein for an
exposition of the microbiological background. Switching and its significance
in gene expression has been discussed via Kolmogorov master equations (and
their numerical analysis) in [9].

The parameter e could, of course, be absorbed inside the \s, but we
choose not do do so because the purpose of € is a scaling of the switching
rates; observe that the quotients of the switching rates (and consequently
the quotients between the mean free and occupied times) are independent of
e. One of several objectives of this paper is to find ways of describing the
behaviour of the expected values and fluctuations of the field variables for
small e.

In [4] is was shown that the TTO system does display stable oscillations
whose presence can be explained as a Hopf bifurcation. It was further shown
how two such TTOs with slightly different periods may couple to produce
long-period oscillations that provide a possible explanation of the cellular
origin of circadian rhythms. We refer the reader to [4], [7] and [2] for further
details.

Reinhard lliner et al
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The TTO example which we have discussed so far is an example of a
random evolution dynamical system, in which the time evolution of state
variables is governed by a combination of macroscopic laws (for example,
laws of mass action) and random variables whose laws are dependent on
the state of the system, as shown above. Random evolutions have been
known and studied for a long time (see for example [6]). Their application to
cell biology and genetic dynamics is a natural consequence of the transition
regimes between micro- and mesodynamics relevant in the cell. (for recent
related work see [9, 10]).

Random evolutions also arise in electrical engineering applications, where
they are often called “switching” systems. See [1] for a recent reference.

The purpose of our paper is to provide a blueprint of how to understand
systems of this type at several different levels of description; We begin in full
generality but will then focus on a rather simple example to keep the analysis
tractable.

The most general scenario of the type of system of interest can be written
in the form

X = f(Iy, Iy, ..., I, X) (11)

where X = X(t) € R", and /; switches randomly between m; values (without
restricting the generality, the integers 0,...,m; — 1.) At any given time the
right-hand side is therefore one of H§:1mj functions. In all the examples
under consideration we will set m; = 2 for all j, such that I; can only take
the values 0 (“off”) or 1 (“on”). We will call this, appropriately, “switching.”

In general the laws of the random variables I; are dependent on the
current value of X (or a functional of X), and the switching rates of the
random variables, scaled by a parameter ¢ > 0, are very fast. Our paper
addresses the following issues.

1. The deterministic limit € 0.

2. The derivation and discussion of forward Kolmogorov master equations
for the systems under consideration, and

3. Diffusion approximations to these master equations, which allow anal-
ysis of the time evolution of expected values and fluctuations of X up
to second order in €. The tool we use is a Chapman-Enskog expansion,
well known from kinetic theory.

It is fair to say that we discuss four different levels of description of the
same phenomenon, where each description has its merits at appropriate scales
of the switching rates. The first level is, of course, the original problem, for a
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given fixed and positive €. For vanishing € one may consider the deterministic
limit, leading to a much simpler system of ordinary differential equations (the
second level of description). To get a complete understanding of the stochas-
tic dynamics of the system, including information about expected values and
fluctuations of X, one derives and analyses (at a third level) the forward
Kolmogorov master equations (for a positive €). However, these equations
will have exchange terms with a factor %, reflecting the high switching rates
for small € (in reality, this forces rapid relaxation towards equilibrated states,
but it makes the Kolmogorov master equations awkward for use in numerical
experiments). Finally, one can use Chapman-Enskog asymptotic expansions
to derive drift-diffusion approximations for “macroscopic” densities (in which
one no longer keeps track of the particular value of the random variables).
This is the fourth level of description.

Our objective in this paper is to present and discuss these levels of de-
scription for a few typical examples of (11). While each individual tool we
employ is well known, we consider it valuable to present them in unison for
these examples.

The presentation should make it transparent that random evolutions are
natural mathematical objects in applications from engineering to finance to
cell biology, and their analysis draws from a toolbox encompassing probability
theory, asymptotic analysis, PDEs and kinetic theory.

1.1 Case studies and well-posedness

The motivating TTO example is a little too complicated for our full program,
although the forward Kolmogorov master equations for this case were derived
in [2]. Here we will concentrate on the second of the simpler examples

1.
X = fi(X), where XeR, I=0,1 (12)

and

Pr{I(t+h) = 1I(t) = 0, X(t) = £} = %)\O(g)h +o(h)

Pr{I(t+h) = 0|I(t) = 1, X(t) = £} = %Al(é“)h +o(h).

The Ao, A are assumed to depend smoothly on £&. We further assume
that there are positive constants 0 < C; < (5 < oo such that for all
§ Cr < \(§) <o

Reinhard lliner et al
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X = fi(X,Y), where (X,Y)eR? I=0,1
Y

= g(X,)Y), and (13)

PG+ h) = 11T(5) = 0,X() = £ Y (6) = n} = ~do(& )+ o(h)

PrI(:+ k) = 0]T(H) = 1,X() = € Y (6) = n} = “Ma(&m)h + ofh)

We assume (again) that the ); depend smoothly on (£,7) and are
bounded below and above by positive constants. For later reference
we denote

Fo = (fo,9), F1:=(f1,9)

The second example differs from the first one in that the law of the random
variable I depends on both X and Y, and via a second ODE. This is similar
to the situation from the TTO example and is motivated by that example.

Our analysis depends on the solvability of initial value problems associ-
ated with the equations under consideration. For simplicity we shall assume
that for each possible value of the random variables Problem (11) is globally
solvable for all initial data inside a domain of interest, and that bounds uni-
form in € can be obtained on all these solutions. Specifically, in the context
of example 1, let i, (t) and zp,q,(t) be the solutions of the initial value
problems

Downloaded From IP - 210.212.129.125 on dated 19-Jun-2013

(t) = min_oqfi(z(t)), x(0) = xo, (14)
#(t) = max—o1fi(z(t)), =(0)=x (15)

and assume that fy, fi are uniformly Lipschitz. Then x,,, and x,,.,. are
uniquely and globally defined, and for each e the solution of example 1 for
X (0) =z satifies Tppin(t) < X(t) < Tyae(t) for all ¢.

The functions x,,;, and ,,,, are deterministic and do not depend on the
laws of the random variable I, and in particular not on e.

1.2 A remark on invariant domains.

In many special cases we can do even better. Suppose that in example 1 we
take fo(x) = —z, fi(xr) =1 —z. It is then immediate that the interval (0, 1)
is invariant under the dynamics: if 0 < Xy < 1, then 0 < X(¢) < 1 for all
t > 0. This has the added advantage that we can assert from the outset that
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fr(X) and X will both remain uniformly bounded for all ¢, regardless of the
values of the A; or of e.

If we make the minor change to reset fy(z) = x, this invariance property
is lost.

The motivating TTO example also has a helpful invariance property: In
fact, a careful analysis of the vector field on the right-hand side shows that
if R1(0) € (0,k11/k12) then Ry(t) will stay in this interval, and there is a
bounded rectangle in the first quadrant of the P, — D; plane such that for
nonnegative initial data the dynamics will keep P, and D; in that rectangle.
Similar properties hold for (R, Py, D). It is even true that the dynamics will
drive the state of the system into this invariant domain if the initial values
are outside.

1.3 Objectives.

The bounds mentioned earlier, or the (stronger) invariance property, if it
applies, makes it possible to show that in the limit ¢ — 0 solutions to our
examples converge almost surely to solutions of time-averaged systems that
are easily derived from elementary arguments. We discuss this in Section 2.
One possible tool to prove this limit rigorously is renewal reward theory; this
was done in detail in [4], and we will not repeat the argument here.

In Section 3 we summarize the derivation of the Kolmogorov master equa-
tions for our examples. Finally, in Section 4 we apply Chapman-Enskog ex-
pansions to derive drift-diffusion approximations. This follows the blueprint
from [11], where the procedure was done rigorously for the Carleman model
from kinetic theory (for general references to Chapman Enskog expansions
in kinetic theory we mention [3] or [8]. Our examples are easier in the sense
that the underlying master equations are always linear, and the end result
of our analysis is a linear partial differential equation of drift-diffusion type
for the evolution of the density distribution function of the field variables. In
particular, solution of this equation allows calculation of the expected value
and variation of these variables up to second order in e.

2 The averaging limit ¢ — 0.

Consider our three examples (ex. 1 and 2, and TTO) in the limit ¢ — 0.
In this section we focus on Example 1 and will simply state the results for
Example 2 and the TTO model.

Define a cycle as a period for which [ is first zero (beginning with the
switch from 1), then switches to 1. The cycle ends at the next switch back to

Reinhard lliner et al
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0. Suppose that the cycle starts at time ¢, and suppose that X (¢) = £. The
assumptions on the transition rates of I imply that for small € the average
time while I stays 0 is ﬁ, while the average time while [ is 1 is ﬁ(S)’ up
to errors of higher order in e. While I = 0 the evolution of X follows fy, and
it switches to f; with the switch of I. Formally, therefore, the average rate

of change of X during a cycle is approximately (we omit the argument &)

sl h _ Afo+ Aofi
U W )

producing the limit equation

. @) folz) + Ao(@) fi(z)
SR W= B % B (16)

Note that the right hand side is a convex combination of f, and f;.

For example 2 the same reasoning produces the limit system

i = (17)
y = glx,y). (18)

Finally, in the TTO example, Eqns. (1) and (4) become

. )\1
R = —— — kiR 19
! AoD2 + A\ 12 ( )
: oD
R —————— — k19 Ro, 20
2 oDy + i 1247 (20)

and the remaining equations do not change. The following result applies.

Proposition 1. Suppose that X (0) = xy for all ¢ > 0. For e = 0 we replace
the system including stochastic switches by the limit equations derived above.
Then, almost surely for all t > 0, the solutions of the equations for positive
e converge to the solution of the limit equation as € — Q.

Proof. For the TTO system this is proved in [4]. The proof given there uses
equiboundedness and equicontinuity of the approximating solutions X = X,
and the renewal reward theorem. This methodology applies to all the cases
under consideration.

Indian Journal of Industrial and Applied Mathematics
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3 The Kolmogorov master equations

In this section we present the derivation of the Kolmogorov master equations
for Example 2. For example 1 we will simply list the result; the TTO
example is done in the appendix. We mention in passing that a related
system was presented, with some numerical experiments, in [9]. However,
no asymptotic analysis for small € was done there.

We denote by Ty and T; the solution operators associated with (13), so
that, for example, £T5(¢)(z, y) = (fo, 9)(To(t)(z, y)). We will further assume
that:

1. There exist (sufficiently smooth) probability distribution densities
po(x,t), p1(x,t) such that

Pr{I(t) =i, X(t) € O} —/pi(:c,t)dw, i=0,1.

where Q = [£,& + AE) x [n,7 + An). We abbreviate & = (£,7), and
O(A) := O(A) + O(An).

2. As already stated in the introduction, we assume smooth transition
rates \g, A1 so that

Pr{I(t+h) =1]I(t) =0, X(t) € Q} = =(Ae(€) + O(A))h + o(h),

—_ =

Pr{I(t+h) =0[I(t) =1,X(t) € Q} = = (A1 (&) + O(A))h + o(h).

[

(Ao, A1 are smooth in &, and bounded above and below by positive
constants).

This assumption implies in particular that the probability of two subsequent
switches in a time interval [t, ¢+ h] is of order o(h). Further, one checks that

Pr{X(t+h)eQI(t)=0} = Pr{X(t+h) € Q,I(t+h)=0}+0(h) (21)
(because switches are simply of probability O(h)). Now expand
Pr{X(t+h)e Q. I(t+h)=1}

Pr{X(t+h)eQI(t+h)=
ZPO+P1

=+ 1

10

Pr{X(t+h) € QI(t+h)=11()=
1,I(t) =

Reinhard lliner et al
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and we compute further, using (21)

Fo

PriX(t+h) € QI(t)=0YPr{I(t+h) =1]I(t) = 0,X(t+h) € Q}
[Pr{X(t +R) €O I(t+h) =0} + O(hﬂ

x Pr{I(t+h)=1I(t)=0,X(t+h) € Q}

(/on(w, t+ h)dx + O(h)) E (Mo(&) +O(A))h + o(h)] .

For P, we use the fact that no switches have happened (because if I is one
at t and at t + h, then either 0 or 2,4,6... switches have happened, and the
latter event has probability o(h)). Hence the dynamics is given by T} during
the whole time interval, and

P

We

Pr{I(t+h) = 1|I(t) = 1, X(t) € Ty(—h)Q} Pr{I(t) = 1, X (t) € Ty(—h)Q}
(1 _ %M(Tl(—h)g)h + 0(h)> /T (@, t)d

(=h)Q

= %(Al(g L O(h) + O(A))h + o(h)) /T e

set © = (x,y) = Th(—h)(z) = (z — hfi(z),u — hg(2)) + o(h), where

z = (z,u). Using this in the obvious substitution we find

/ @)z = / Pz — hfu(2),u — hg(2)(1 - h(@.fi(2) + Oug(2))) dz + o(h)
Ti(—h)Q )

Collecting all terms, (22) becomes

/Qpl(a:,t+h)d:1: = (/on(a:,t+h)da:+0(h)>[

%()\0(5) +O(A)h+ ofh)|
([ 1l = R 0= ha(2) (1= hO-f(2) + Dug(2) dz)

< - %(Al(g £ O() +0()h+ ofh)].

11
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Dividing by || and sending A&, An — 0 yields

pltth) = (pol&t+h)+0Mm) [TAo(€)h + o)

+ P~ hfi(€),n — hg(€)) (1 — PO (€) + D9(6)))
x 1= (e + 0+ o]
= (@&t Wb+ (€~ Rf(€)n— hy(E))

% [1= D+ O~ h(@A(E) + D,9(8))] + olh).

Subtracting p; (&€, t) from both sides, dividing by h and taking the limit A — 0
gives

hmi[Pl(E t+h)— Pl(f,t)] = }lblm 1 [p1(§ hfi(€),n — hg(§)) —pl(gjt):|

~ PO (0ch1©) +0,0(8)] + > Co(€lpo(&.t) -

or

Qpl(g t) = —(f1,9> -Vpi1(§,t) — p(€) [(aéfl + &79)}

ot
+ =(Mo(&)po(&;t) — pr(&)Ai(E)).

A | =

An analogous calculation applies for py. Summarizing, these probability den-
sities satisfy the forward Kolmogorov master equations

0 1
% + Vg <F0p0> = E()‘lpl — oDo).
0 1
% + Vg <F1p1) = —()\opo A1p1).

The corresponding calculation for Example 1 leads to the Kolmogorov
master equations

o1 + 0.(fip1) =

Oipo + 0z (fopo) =

[)\opo - )\1]91]

[/\11)1 - Aopo] (22)

ANl

12
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These Kolmogorov master equations intrinsically contain all the informa-
tion about the system we could only ask for. The probability densities pg and
p1 can in principle be computed for all times from initial data, and they allow
the calculation of all the relevant quantities like expectations and variance of
the components of X. For an € of order 1, this is feasible, and some work in
this sense has been done in [9]. However, for small ¢ the numerical solution
of these equations becomes unreasonable; and even if it could be done, it
may provide information the user is not really interested in. After all, it may
not be of interest whether I at a particular moment takes the value 0 or 1;
what matters in practical applications is the cumulative (diffusive) effect of
the switches of I on X.

One idea one might pursue is to study the moment equations derived
from the Kolmogorov master equations: for example 1, one multiplies the
system equations by powers z¥ where k = 0,1,2, ..., integrates over = and
uses boundary conditions if necessary. This procedure leads to recursively
solvable systems of ODEs if the rates \; are constant, and if the functions f;
are simple enough (for example, for f;(x) =i — x.) This was demonstrated
in [7]. However, for the generality we are considering in the current work the
emerging system of moment equations is not a closed system and therefore
not solvable.

A powerful alternative is based on a suitable asymptotic expansion in e,
which allows to reduce the system to one equation of drift-diffusion type. We
demonstrate this reduction in the next section.

4 The Chapman-Enskog expansion

We restrict the discussion to Example 2. As stated previously, the Kol-
mogorov master equations contain all the necessary information about the
system. However, the exchange terms on the right-hand side carry a factor
%, which makes them highly oscillatory for small €. It is intuitively expected
that the exchange terms lead to diffusive behaviour at a macroscopic level,
and this intuition is borne out by mathematical analysis. This is what we
are going to do in this section: our objective is to find a diffusion-type PDE
for the evolution of p(x,t) := po(x,t) + p1(x, 1), accurate at 1st order in e.
We recall the Kolmogorov master equations

) i 1
O ) + dive [pxw,w (4 ] —  @m(e.0 - M@nt],
where k =7+ 1 mod 2. It is convenient to set

13

Indian Journal of Industrial and Applied Mathematics



www.IndianJournals.com
Members Copy, Not for Commercial Sale

Downloaded From IP - 210.212.129.125 on dated 19-Jun-2013

On Random Dynamical Systems and
Levels of Their Description

pofo+ pifi1 ) 1
m = , d: = by Y .
( (Po +p1)g )\0+)\1( 0Po 1P1)

and we abbreviate further

Ao Y
TN N

Sy = ——,
O NN

Then d = sopy — s1p1- In the new variables p and d the system is equivalent
to
Oip + divym = 0,

(?td—i— S0 lem |:p0 ( 'g) ) :| — Sldin |:p1 ( fgl ) :|

1
= E(Aﬂ?l - )\opo) = =

and

Ao + A1

d.

Here p is the density function of the unkown X; d is an exchange term
which relaxes rapidly (at rate %), and m can be expressed as a combination
of p and d. The objective of the Chapman-FEnskog expansion is to eliminate
the 2nd equation and to express m in terms of p alone; the expansion cannot
hold on an initial layer of length O(1/¢), but provides an approximation ( to
order o(€)) to py + p1 on time intervals bounded away from 0. So we have
two original unknowns py, p; and wish to reduce our model to just one target
unknown p. To this end, we first express m in terms of p and d. Specifically,
we write

m:A(Z), with A = A(z).

To find the entries of the matrix A, we first express py and p; in terms of
pand d :

PotpL=p _, P = d+s1p
S0po — s1p1 = d p1 = —d+sop

Using this in the definition of m and

m:(Pofo+P1f1>:<041 51)(0)
(Po+p1)g ay [ d )’
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we easily compute

ay = sof1 + s1fo,
Qg = ¢,

The equation for p is thus

3t 1% + lem

A

and the equation for d is

p
d

)}

Indian Journal of Industrial and Applied Mathematics

b= fo— f1,
B2 = 0.

(23)

ud + s divg [(d+slp) ( J;O )} — sidivg [(—d+sop) ( J;l )} - —%(A0+>\1)d,

The key idea of the Chapman-Enskog expansion is to expand d in a power
series in € (but not to expand the target variable p). This is motivated by

the expectation of rapid decay of d.

We therefore write d = Z ¢*d;, and wish to use the first order approxi-

k=0

mation dy + ed; in (23). From the equation for d:

Zek(dk)t + s fo(ZEkdk—l—slp)>
k=0 k=0 T
+ S0 Q(Zdek + 81/)))
k=0 y
- 5 fl(—ZEkdk-i‘SoP))
k=0 "
— 5 g<—26kdk+sop)>
k=0 y

1
€

[ee]

Mo+ A1) ey

k=0

Matching coefficients of equal powers of € we find dy = 0 and thus 0;dy = 0,
so that we can discard dy. Then match coefficients of €°:

so(fos1p)z + s0(gs1p)y — 51(f1500)2 — s1(950p)y = — (Ao + A1 )ds

15
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This determines d;. We write out the equation (23) for p:

Oip + Oy ((SOfl +s1fo)p + (fo — fl)d)> +9,(gp) =0,

and substitute ed; for d, where we neglect terms of order o(¢) and d; is given
by

0= | () ()
W WEN A GV WA )\o+>\19py

e (), * ()
Do+ 202 [\ g+ 0,7 No+n)

(we have resubstituted sy = L, etc.) Writing d ~ dy + ed; in (23)
Ao+ M1
produces
Aof1+ Ao Xo(fo — f1) A1 At }
Op + 0y —
P < SIS VN S WIS W P ()\0 +A1f°p)x ()\0 +A19p)y

R (), + (52| o =0t

Equation (24) is our target equation. It is not immediately clear that
it is an equation of drift-diffusion type, but by calculating the coefficients
Cuas Cry, Cyy Of Pug, Pays pyy, we find:

Cyy =0

(this is not surprising because there is no switching in the equation for Y")

o= F)2ok

Cx:c = - < 07
(Ao +Ap)?
and
Cyy = 0.
If we set € = 0 in (24) we are left with the partial differential equation
Aof1+ A1 fo )
A 170 =0. 25
8tp+8< N " +9y(gp) =0 (25)

The characteristic equations visible in this PDE of transport type are the
limit equations from section 2, as they should be. This is a consistency test
of our theory.
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5 Conclusions

We showed how a dynamical system in which the right-hand sides switch
rapidly according to Markovian random switches whose laws depend on the
system itself can be analysed at various levels of description- in its origi-
nal form, in the limit of infinite rapid switching rates (leading to a system
of ODEs), via the associated Kolmogorov master equations, and finally via
a drift-diffusion approximation obtained by a Chapman-Enskog expansion.
Our discussion was formal, but given that the original systems admit strong
a priori bounds on the values and rates of change of the dependent variables,
and that the computed drift-diffusion equations obtained via the CE expan-
sion are linear, we assert that the approximation of py + p; by p is accurate
to order €? on time intervals [e, T], where an initial layer must be exlcuded
(see [12],[11]).

In applications, the drift-diffusion equation may be used to compute ex-
pected values [ zp(z,t) dz or fluctuations of the dependent variable accurate
to second order in €. Finally, it is an interesting question whether the intrinsic
diffusivity in biological systems incorprating switches (such as cells) carries
an adaptive advantage. The Chapman-Enskog expansion should also allow
to distinguish intrinsic diffusion (as discussed here) from external noise.
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