STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 86 (For candidates admitted from the academic year 2009–10 & thereafter)

SUBJECT CODE: CH/PC/PC24

M.Sc. DEGREE EXAMINATION APRIL 2011 BRANCH IV – CHEMISTRY SECOND SEMESTER

		SECOND SEMESTER REG.NO						
PAPEI	₹ :	CORE ADVANCE 30 MINS	D PHYSICAI SEC	L CHEMIS	TRY	MAX. MAI	RKS :20	
Answe	TO BE ANSWERED ON THE QUESTION PAPER ITSELF. er all the questions. $(20 \text{ x } 1=20)$							
СНОО	SE TI	HE CORREC	CT ANSWER:	:				
	a) allb) allc) all	process, cher process, cher chemical pro	oltz equation is mical or physic mical or physic cesses in a clos cesses in a clos	cal cal but in a c sed system		l		
	a) a sb) a sc) on	spontaneous c spontaneous c	ing is true abor hange is unidir hange to occur s in equilibriun	rectional , time is no	factor			
	a) M	in's theory far oderate tempe ry low temper	erature		o) High temp	erature and high temp	perature	
	The peal		ara-hydrogen i b) 9	n hydrogen 6.95	gas at 0 K, is c) 38.		d) 9.8	
5.	The transfer a) $\frac{(2\tau)^2}{2}$	ansitional par $\frac{\tau mkT)^{3/2}}{h^3}$. V	tition function b) $\frac{(2\pi mkT)^2}{h^3}$.	equations is $V^{1/2}$ c	$(h^3)^{3/2} \cdot V$	d) $\frac{(2\pi mkT^3}{h^3}$	$\frac{1}{2} \cdot V$	
	The L a) $\frac{K}{T}$	agrangian mu	Itiples (β) is each β	qual to	c) (K'	$T)^{-2}$	d) $\frac{1}{KT}$	
	collisi		cules each of a	A and B ir		number of po		
	a) 4		b) 8	C 1:CC :	c) 16	2° 1 2	d) 32	
8.	The ed	quation for the	e rate constant	oi a diffusi	on controlled	reaction betv	veen two	

different molecules is $(4RT) \qquad (8RT) \qquad (3RT) \qquad (4RT) \qquad (4RT)$

a)
$$K_D = \left(\frac{4RT}{3\eta}\right)$$
 b) $K_D = \left(\frac{8RT}{3\eta}\right)$ c) $K_D = \left(\frac{3RT}{8\eta}\right)$ d) $K_D = \left(\frac{4RT}{9\eta}\right)$

/2/ CH/PC/PC24

	9.	Electrolytic cells are electrochemical cells in which						reactions		
			e forced to occur be Spontaneous	•	-			othermic	d)	endothermic
	10.		ne hydrogen over v 0.09V		ge of Platon 0.25V	•		ectrode is 23V	d)	0.00V
FII	LL	IN	THE BLANKS:							
	11.	. Pa	artial molar free er	ergy	(\bar{G}) was ca	ılled as		b	y Gibbs	S.
	12.	. Fe	ermions obey			_statistics.				
	13.	. Th	ne Debye third pov	ver l	aw is, $C_V =$	=	·			
	14.	. Va	ariation of the ra	ite o	f the react	ion betwe	en ion	is in the	presen	ce of an added
		ele	ectrolyte acting as	cata	lyst is called	d as			_ effect	
	15.	. O	ver voltage is ob	oserv	ed in case	of cells	workii	ng under		
		co	onditions.							
AN			R IN ONE OR T							
	16.	. W	rite Gibbs phase r	ule.	Name its co	omponents	•			
	17.	. W	hat are ensembles	?						
	18.	. W	hat is partition fur	nctio	n?					
	19.	. W	hat do you unders	tand	by chain le	ngth?				
	20.	. W	rite the Butler-Vo	lmer	equation.					

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 86 (For candidates admitted from the academic year 2009–10 & thereafter)

SUBJECT CODE: CH/PC/PC24

M.Sc. DEGREE EXAMINATION APRIL 2011 BRANCH IV – CHEMISTRY SECOND SEMESTER

COURSE: CORE

PAPER : ADVANCED PHYSICAL CHEMISTRY

TIME : 2 HOURS & 30 MINS MAX. MARKS :80

SECTION - B

Answer any five questions.

(5x8=40)

- 1. Draw and describe the phase diagram of acetic acid-chloroform-water.
- 2. a) Derive Maxwell's relations.
 - b) Explain residual entropy with examples.

(6+2)

- 3. a) Derive Einsteins theory of specific heat of solids.
 - b) Debye's characteristic temperature of copper is 321.3K. Calculate C_{ν} at 20.2 K.

(5+3)

- 4. Discuss Onsager's reciprocal relations.
- 5. Describe the Rice-Herzfield mechanism in decomposition of acetaldehyde.
- 6. Write a brief account on Transition state theory.
- 7. Write notes on (a) Tafel equation (b) polarization (4+4)

SECTION - C

Answer any two questions.

(2x20=40)

- 8. a) Derive all forms of Gibbs-Helmoltz equation. Explain its applications.
 - b) The e.m.f of the coil $Pb/PbCl_2$ // AgCl/Ag at 298K is 0.49 V. If $\left(\frac{\partial E}{\partial T}\right) = -1.86 \times 10^{-4} \text{ vol deg}^{-1}$. Calculate $\Delta H, \Delta G, \Delta S$.
 - c) Derive all forms of Gibbs-Duhem equation.

(8+6+6)

- 9. a) Explain Bose-Einstein statistics.
 - b) Explain the heat capacity of hydrogen, with its limitations.
 - c) Calculate the translational partition function for 1 mole of oxygen at latm. pressure at 25°C. from the following data. (Assume ideal behavior) Volume per mole of the gas = $0.0469 \, m^3 mol^{-1}$

mass of 1 molecule of oxygen = $5.314 \times 10^{-26} kg$

$$k = 1.381 \times 10^{-23} J K^{-1}$$

 $h = 6.626 \times 10^{-34} J s$ (8+6+6)

- 10. a) Discuss the influence of solvent on reaction rate.
 - b) Describe the physical interpretation of standard rate constant.
 - c) Draw and explain the structure of the electric double layer.
 - d) Evaluate the diffusion controlled rate constant for the reaction between two similar molecules in water at 298 K, given that η for water is

$$1 \times 10^{-3} \ kg \ m^{-1}s^{-1}$$
. [R = 8.314 K⁻¹ mole⁻¹]. (5+5+5+5)