STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 86 (For candidates admitted from the academic year 2009–10 & thereafter)

SUBJECT CODE: CH/PC/CO24 M.Sc. DEGREE EXAMINATION APRIL 2011 BRANCH IV – CHEMISTRY SECOND SEMESTER

COURSE :		CORE	REG.NO					
PAPE TIME	ER :		TION CHEMISTRY		MARKS :20			
		TO RE ANSW	SECTION – A VERED ON THE QU		rsfi f			
Answ		e questions.		ESTION I ALEX I	$(20 \times 1 = 20)$			
I	CHO	OSE THE COL	RRECT ANSWER:					
1.	Which	Which is the most stable complex ion among the following						
	a) [B	a(OH)]+	b) $[Mg(OH)]^+$	c) $[Be(OH)]^+$	d) $[Ca(OH)]^+$			
2.	Number of stereo isomers exhibited by the complex,							
	$[Pt\ Br\ Cl\ I\ (NO_2)\ (C_5H_5N)\ (NH_3)]$ is							
	a) 15		b) 30	c) 45	d) 60			
3.	. The CFSE value of d^5 low spin octahedral is							
	a) 16	Dq	b) 20 Dq	c) 0 Dq	d) 4 Dq			
4.	Which is strong field legend?							
	a) <i>Cl</i>	-	b) <i>F</i> ⁻	c) <i>CN</i> ⁻	d) <i>I</i> ⁻			
5.	Ground	round energy state for the d^2 free ion is						
	a) ¹ L)	b) ¹ <i>G</i>	c) ³ <i>P</i>	d) 3F			
6.	The correct increasing order of trans-directing ability is							
	a) $Cl^- < Br^- < Py < NH_3$			b) $Py < NH_3 < Cl^- < Br^-$				
	c) NE	I / Cl - / Rr	- / Day	d) $NH = Pv = Cl^{-1}$	- / Br-			
7	c) $NH_3 < Cl^- < Br^- < Py$ d) $NH_3 < Py < Cl^- < Br^-$ The experimental magnetic moment (in B.M) is the highest for							
7.	a) Sm	_	b) Eu^{3+}	c) Ga^{3+}	d) <i>Pm</i> ³⁺			
0	,		,	,	,			
8.	The absorption band of $[Ti(H_2O)_6]^{3+}$ at 20,400 c. m^{-1} of crystal field origin can be							
	assign			\				
			b) $5T_{2g} \rightarrow 5E_g$					
9.	Non heme iron-sulfur protein involved in electron acceptor in photo synthesis is							
	a) Ch	lorophyll	b) Ferrodoxin	c) haemoglobin	d) myoglobin			
10). The pH	H dependence sl	hown by hemoglobin is	s known as				
	a) cod	operativity effec	et b) Hill effect	c) Bohr effect	d) Chelate effect			

II FILL IN THE BLANKS: 11. Irvin-William order of stability of complexes is consistent with _____ concept. 12. In dsp^3 hybridised orbitals, d orbited involved is ______ of the inner 13. Tanabe-Sugano diagram is useful in the interpretation of ______ in one electronic spectra. 14. The blue colour of $CuSO_4$. $5H_2O$ is due to absorption around ______ $c. m.^{-1}$. 15. The ligand in vit B₁₂ has ______ structure, while that in chlorophyll has _____structure. Ш ANSWER IN ONE OR TWO SENTENCES: 16. Write the linkage photo isomerization product of $[Co(NH_3)_5(NO_2)^2]^+$. 17. State Jahn-Teller effect. 18. Explain Racah parameter. 19. Why $[Fe(CN)_5(NH_3)]^{3-}$ has a less negative isomer shift than $[Fe(CN)_6]^{4-}$?

20. Why do transition elements form co-ordination compounds?

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 86 (For candidates admitted from the academic year 2009–10 & thereafter)

SUBJECT CODE: CH/PC/CO24

M.Sc. DEGREE EXAMINATION APRIL 2011 **BRANCH IV - CHEMISTRY** SECOND SEMESTER

COURSE: CORE

PAPER : COORDINATION CHEMISTRY

TIME : 2 HOURS & 30 MINS MAX. MARKS:80

SECTION - B

Answer any five questions.

(5x8=40)

- 1. Explain the factors affecting the stability of coordination compounds.
- 2. Name the different kinds of isomerism possible in coordination compounds. Give one example of each kind.
- 3. Discuss carefully and concisely the splitting of d-orbitals in the case of
 - (i) Octahedral Complexes (ii) Tetrahedral Complexes.
- 4. What is trans effect? Explain it with suitable examples. Discuss polarization theory.
- 5. Describe the ESR spectra of
 - a) bis Salicyaldimine copper (II)

b)
$$[(NH_3)_5 - Co - O - O - Co(NH_3)_5]^{3+}$$
 (4+4)

- 6. Discuss the role played by metal ions in biological system.
- 7. Write a note on biological fixation of nitrogen.

SECTION - C

Answer any two questions.

(2x20=40)

- 8. a) Describe the photo substitution reactions of chromium and cobalt complexes.
 - b) Discuss the stereochemistry of complexes exhibiting coordination number 4 and 6.

(10+10)

- 9. a) Discuss the factors influencing the magnitude of crystal field splitting.
 - b) Draw and explain Mössbauer spectra of
 - (i) $K_4[Fe(CN)_6]$
- (ii) $K_3[Fe(CN)_6]$ (iii) $Na_2[Fe(CN)_5NO]$
- c) Explain the utility of orgel diagram.

(8+9+3)

- 10. a) Write a brief notes on macrocyclic compounds.
 - b) Illustrate the structure of myoglobin and hemoglobin. Describe in detail the role played by these bio-inorganic compounds in biological system.