STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2009-10 & thereafter)

SUBJECT CODE : MT/PC/DG44

M. Sc. DEGREE EXAMINATION, APRIL 2012 BRANCH I – MATHEMATICS SECOND SEMESTER

COURSE : CORE PAPER : DIFFERENTIAL GEOMETRY TIME : 3 HOURS

MAX. MARKS : 100

SECTION – A

ANSWER ANY FIVE QUESTIONS :

(5 X 8 = 40)

- 1. Show that a unit speed curve in \mathbb{R}^3 with constant curvature and zero torsion is a circle.
- 2. Let $\gamma(t)$ be a regular curve in \mathbb{R}^3 . Show that its curvature is $k = \frac{\|\ddot{\gamma} \times \dot{\gamma}\|}{\|\dot{\gamma}\|^3}$.
- 3. Define Mobius band and find its standard unit normal. Show that Mobius band is not orientable.
- 4. Obtain the expression for the first fundamental form of a surface patch σ . find the first fundamental form of the plane $\sigma(u, v) = a + up + vq$.
- 5. Show that the area of a surface patch is unchanged by reparametrisation.
- 6. State and prove Euler's theorem.

ANSWER ANY THREE QUESTIONS :

7. Find the Gaussion curvature of the surface of revolution $\sigma(u, v) = (f(u) \cos v, f(u) \sin v, g(u))$ where f > 0 and $\dot{f}^2 + \dot{g}^2 = 1$ everywhere.

SECTION – B

(3 X20 = 60)

8. a) Let γ(s) and γ̄(s) be two unit-speed curves in ℝ³ with the same curvature k(s) > 0 and the same torsion τ(s) for all s. Show that there is a rigid motion M of ℝ³ such that γ̄(s) = M(γ(s)) for all s. Also show that if k and t are smooth functions with k > 0 everywhere, then there is a unit-speed curve in ℝ³ whose curvature is k and whose torsion is t.

b) Find the curvature and torsion of the curve $\gamma(t) = \left(a(1 + \cos t), a \sin t, 2a \sin \frac{1}{2}t\right).$ (12+8)

9. a) Let σ: U → R³ be a patch of a surface S containing a point P of S, and let (u, v)be coordinates in U. show that the tangent space to S at P is the vector subspace of R³ spanned by the vectors σ_u and σ_v (the derivatives are evaluated at the point (u₀, v₀) ∈ U such that σ(u₀, v₀) = P.

b) Show that the unit sphere $S^2 = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 + z^2 = 1\}$ is a surface. (8+12)

- 10. Show that a diffeomorphism $f: S_1 \to S_2$ is conformal if and only if, for any surface patch σ_1 on S_1 , the first fundamental forms of σ_1 and $f \circ \sigma_1$ are proportional.
- 11. a) Let k_1 and k_2 be the principle curvatures at a point P of a surface patch σ . Show that
 - (i) k_1 and k_2 are real numbers.
 - (ii) if $k_1 = k_2 = k$, say, then $\mathcal{F}_{11} = k\mathcal{F}_1$ and (hence) every tangent vector to σ at *P* is a principle vector.
 - (iii) if $k_1 \neq k_2$, then any two (non-zero) principle vectors t_1 and t_2 corresponding to k_1 and k_2 respectively, are perpendicular.
 - b) If γ(t) = σ(u(t), v(t)) is a unit-speed curve on a surface patch σ, show that its normal curvature is given by k_n = Lu² + 2Muv + Nv², where Ldu² + 2Mdudv + Ndv² is the second fundamental form of σ.

(16+4)

12. State and prove Gauss's Remarkable theorem.

(20)
