STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011-12)

SUBJECT CODE : 11MT/PE/BM24 M. Sc. DEGREE EXAMINATION, APRIL 2012 BRANCH I – MATHEMATICS SECOND SEMESTER

COURSE	:	ELECTIVE
PAPER	:	BASIC MATHEMATICAL METHODS
TIME	:	3 HOURS

MAX. MARKS : 100

SECTION -A

Answer all the questions:

- 1. Show that the matrix $A = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$ is orthogonal.
- 2. If $y = x^{x^{x \dots \infty}}$, find $\frac{dy}{dx}$.
- 3. Evaluate $\int \sin^2 x \, dx$.
- 4. The rate of monthly salary of a person increases annually in A.P. It is known that he was drawing Rs.200 a month during the 11th year of service and Rs.380 during the 29th year. Find his starting salary and the rate of annual increment.

5. Solve
$$\frac{dy}{dx} + \frac{\sqrt{1-y^2}}{\sqrt{1-x^2}} = 0.$$

SECTION – B

5×6=30

5×2=10

- Answer any five questions: 6. If $= \begin{bmatrix} 2 & 2 & 5 \\ 5 & 3 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 7 \\ 2 & 5 \\ 3 & -2 \end{bmatrix}$ verify that $(AB)^T = B^T A^T$.
 - 7. Prove that if $y = \sin(m \sin^{-1}x)$, then $(1 x^2)y_2 xy_1 + m^2y = 0$.

8. Differentiate with respect to x, (a) $\frac{1+x^2}{1-x^2}$; (b) $xe^x sinx$.

- 9. Evaluate $\int e^{ax} sinbx \, dx$.
- 10. Given sin45 = 0.7071, sin50 = 0.7660, sin55 = 0.8192, sin60 = 0.8660. Find sin52 using suitable Interpolation formula.
- 11. Three numbers whose sum is 18 are in A.P. If 2, 4, 11 are added to them respectively. The resulting numbers are in G.P. Determine the numbers.

12. Solve
$$\frac{dy}{dx} + y\cos x = \frac{\sin 2x}{2}$$
.

..2

SECTION –C

Answer any three questions:

13. a) Solve by matrix method 2x + 4y + z = 5; x + y + z = 6; 2x + 3y + z = 6.

b) If
$$A = \begin{bmatrix} 5 & 4 & -2 \\ 4 & 5 & -2 \\ -2 & -2 & 2 \end{bmatrix}$$
. Show that A satisfies $(A - 10I)(A - I) = 0$. Hence find A^3 .
(10+10)

- 14. a) Find the maxima and minima of $x^3 18x^2 + 96x + 4 = 0$.
 - b) If $u = \log (x^3 + y^3 + z^3 3xyz)$, show that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{x+y+z}$. c) Find the equation of the tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. (4+8+8)

15. a) Find y(10) using Lagrange's Interpolation formula from the given data:

$$\frac{x}{y} \frac{5}{12} \frac{6}{13} \frac{9}{14} \frac{11}{16}$$

b) Evaluate $\int \frac{dx}{x^2 + 4x + 13}$.
c) Prove that $\int_0^{\pi/4} \log(1 + \tan x) \, dx = \frac{\pi}{8} \log 2$.
(6+6+8)

16. a) Insert three geometric means between 3 and $\frac{3}{16}$.

b) Sum to infinity the series $1 + \frac{1+2}{1!} + \frac{1+2+2^2}{2!} + \frac{1+2+2^2+2^3}{3!} + \dots \infty$ c) Expand $f(x) = \begin{cases} -x, & -\pi < x \le 0\\ x, & 0 < x < \pi \end{cases}$ only as the cosine series. (6+6+8)

17. Solve a)
$$xdy - ydx = \sqrt{x^2 + y^2} dx$$
.
b) $(D^2 - 5D + 6)y = e^{4x}$.
c) $(D^2 - 2D - 8)y = 4\cos 2x$.
(6+6+8)

3×20=60