STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011-12)

SUBJECT CODE : 11MT/PC/MI24 M. Sc. DEGREE EXAMINATION, APRIL 2012 BRANCH I – MATHEMATICS SECOND SEMESTER

COURSE	: CORE	
PAPER	: MEASURE THEORY AND INTEGRATION	
TIME	: 3 HOURS	MAX. MARKS : 100
SECTION – A		

Answer all the questions:

5×2=10

- 1. Define: Lebesgue outer measure.
- 2. If ψ is a measurable function, then prove $\int_{A \cup B} \psi \, dx = \int_A \psi \, dx + \int_B \psi \, dx$, for any two disjoint measurable sets *A* and *B*.
- 3. When is a set function μ a measure?
- 4. Define $L^{\infty}(\mu)$.
- 5. Define the Jordan decomposition of a signed measure.

SECTION - B

Answer any five questions:

5×6=30

- 6. If $\{Ei\}$ is a sequence of measurable sets, then prove that if
 - (i) $E_1 \subseteq E_2 \subseteq E_3$ then $m(\lim E_i) = \lim m(E_i)$.
 - (ii) $E_1 \supseteq E_2 \supseteq E_3 \dots \& m(E_i) < \infty$ for each *i*, then $m(\lim E_i) = \lim m(E_i)$.
- 7. For any sequence of sets (E_i) , prove that $m^*(\bigcup_{i=1}^{\infty} E_i) \le \sum_{i=1}^{\infty} m^*(E_i)$
- 8. State and prove Lebesgue's Monotone Convergence Theorem.
- Let [[X, S, μ]] be a measure space and f be a non-negative measurable function. Then prove φ(E) = ∫ f dμ is a measure on the measurable space [[X, S]]. If in addition ∫ f dμ < ∞, then prove that for all ε > 0, there exists δ > 0 such that, if A ∈ S, and μ(A) < δ, then φ(A) < ε.
- 10. Show that if $\varphi(E) = \int f d\mu$ where $\int f d\mu$ is defined, then φ is a signed measure.
- 11. Prove that a countable union of sets positive with respect to a signed measure ν is a positive set.
- 12. If $E \in S \times \mathfrak{I}$, then for each, $x \in X$, and $y \in Y$, prove that $E_x \in \mathfrak{I}$ and $E^y \in S$.

SECTION – C

Answer any three questions:

13. (i) The rationals Q are enumerated as q_1, q_2, q_3, \dots and the set G is defined by

$$G = \bigcup_{n=1}^{\infty} \left(q_n - \frac{1}{n^2}, q_n + \frac{1}{n^2} \right)$$
. Prove that for any closed set $F, m(G\Delta F) > 0$.

- (ii) Show that there exists uncountable sets of zero measure.
- 14. State and prove Fatou's Lemma.
- 15. If $1 \le p < \infty$ and $\{f_n\}$ is a sequence in $L^p(\mu)$ such that $||f_n f_m||_p \to 0$ as $n, m \to \infty$, then prove that there exists a function f and a subsequence $\{n_i\}$ such that $\lim_{n\to\infty} f_{n_i} = f \ a. e.$ Also prove that $f \in L^p(\mu)$ and $\lim_{n\to\infty} ||f_n - f||_p = 0.$
- 16. a) Discuss Hahn decomposition of a measureable space [[X, S]] with signed measure v.
 b) State and prove Lebesgue Decomposition Theorem.
- 17. a) Let *f* be a non-negative $S \times \mathfrak{T}$ measureable function and let $\varphi(x) = \int_Y f_x d\nu$, $\psi(y) = \int_X f^y d\mu$ for each $x \in X$, $y \in Y$ then prove that φ is S – measurable, ψ is \mathfrak{T} – measurable and $\int_X \varphi d\mu = \int_{X \times Y} f d(\mu \times \nu) = \int_Y \psi d\nu$.
 - b) State and prove Fubini's Theorem.

3×20=60