STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011-12)

SUBJECT CODE : 11MT/PC/LA24

M. Sc. DEGREE EXAMINATION, APRIL 2012 BRANCH I – MATHEMATICS SECOND SEMESTER

COURSE	: CORE
PAPER	: LINEAR ALGEBRA
TIME	: 3 HOURS

MAX. MARKS : 100

Section-A

Answer ALL the questions

(5x2=10)

- 1. Define a module and a Finitely generated module.
- 2. If $T \in A(V)$ is nilpotent, then prove that $\alpha_0 + \alpha_1 T + \alpha_2 T^2 + \dots + \alpha_m T^m$, is invertible if $\alpha_0 \neq 0$.
- 3. Define characteristic value of a linear operator T on V and the characteristic value of A, where A is an $n \times n$ matrix over the field F.
- 4. Define adjoint of a linear operator. If *T* and *U* are linear operators on *V*, prove that $(TU)^* = U^*T^*$.
- Let *f* be a form and *T* be a linear operator on finite-dimensional inner product space *V*.
 Prove that *f* is Hermition if and only if *T* is self adjoint.

Section-B

Answer any FIVE questions

(5x6=30)

- 6. Prove that intersection of any two submodules is a submodule.
- 7. Let $V = V_1 \oplus V_2$, where V_1 and V_2 are subspaces of V invariant under T and let T_1 and T_2 be the linear transformation induced by T on V_1 and V_2 . Prove that minimal polynomial of T is the least common multiple of minimal polynomials of T_1 and T_2 .
- 8. Let T be a linear operator on an n-dimensional vector space V. Prove that the characteristic and minimal polynomials for T have the same roots, except for multiplicities.

- 9. If T is a linear operator on a finite dimensional space V, prove that T is triangular if and only if the minimal polynomial for T is a product of linear polynomials over F.
- 10. Let V be a finite dimensional inner product space and f a linear functional on V. Then prove that there exists a unique vector β in V such that $f(\alpha) = (\alpha | \beta)$, for all α in V.
- 11. Prove that, for any linear operator *T* on a finite dimensional inner product space *V*, there exists a unique linear operator T^* on *V* such that $(T\alpha | \beta) = (\alpha | T^*\beta)$, for all α, β in *V*.
- 12. Let V be a complex vector space and f a form on V such that $f(\alpha, \alpha)$ is real for every α . Then prove that f is Hermition.

Section-C

Answer any THREE questions

(3x20=60)

- 13. State and prove Fundamental Theorem on finitely generated modules.
- 14. State and prove Principal Axis theorem.
- 15. (a) State and prove Cayley Hamilton theorem.
 - (b) Prove that minimal polynomial for $T \in A(V)$ divides the characteristic polynomial for $T \in A(V)$.
- 16. Prove that $S, T \in A(V)$ are similar if and only if they have same elementary divisors.
- 17. If T in A(V) has an minimal polynomial $p(x) = q_1(x)^{e_1}q_2(x)^{e_2} \dots q_k(x)^{e_k}$ over F, where $q_i(x)$'s are distinct irreducible polynomial over F, obtain the rational canonical form of T.