STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2008-09 & thereafter)

SUBJECT CODE: PH/MC/SS64

B.Sc. DEGREE EXAMINATION APRIL 2012 BRANCH III - PHYSICS SIXTH SEMESTER

COUR	SE :	MAJOR -	- CORE	ORE		
PAPEI TIME	R :	SOLID ST 30 MINS.	TATE PHYSICS	MAX. MARKS: 30		
SECTION – A TO BE ANSWERED IN THE QUESTION PAPER ITSELF ANSWER ALL QUESTIONS: $(30 \times 1 = 30)$						
1.		CORRECT e following ha b) C	ANSWER: as the hydrogen bo c) HF	onding? d) C _S Cl		
	When the boa) remains c c) increases	onstant	decreased, the bon b) also decrea d) none of the	ases		
3.	Which bond is available in the three states of matter? a) Metallic bond b) covalent bond c) Ionic bond d) Vander wall's bond			oond		
4.	A combinati a) Schottky c) Frenkel c	defect	ion vacancy and o b) lattice defo d) Edge di	ect		
5.	Frenkel and a) Electron c) Intrinsic	ic defects	b) Schottky d	together are called b) Schottky defects d) Extrinsic defects		
6.	Which type of point defect is dominant in alkali halides? a) Schottky defect b) Interestitialcies c) Frenkel defect d) point defect					
	The mass of a) Electrost c) Gravitation	atic field	aries with variatio b) Magnetic i d) speed			
	a) increasing	al conductivit g its temperate g its vibration	ure b) dec	nay be increased by creasing its temperature decreasing its temperature and vibrations		

9.	Electrical conductivity at absolute temperature T is related to its thermal conductivity K as				
	a) $K / \sigma T = L$ b) $\sigma KT = LC$ c) $\sigma / KT = L$ d) None of the above				
10.	Above the Curie temperature a magnetic material becomes a) Ferromagnetic b) Paramagnetic c) Diamagnetic d) None of the above				
11.	Ferrities are a) Ferromagnetic materials b) nonmagnetic materials c) Ferroelectric materials d) Ferri magnetic materials				
12.	The diamagnetic susceptibility is a) Positive always b) negative always c) Zero always d) Depending on the material and can be positive, zero (or) negative				
13.	Soft super conductors observe a) Silsbee's rule b) Meissner effect c) both a & b d) None of the above				
14.	When isotopic mass increases the critical temperature of a superconductor a) Increases b) decreases c) remains unchanged				
15.	Which of the following can be Type I superconductor? a) Pb b) Nb c) Nb ₃ Ge				
II.	FILL IN THE BLANKS:				
16.	Cohesive energy in case of VanderWaals bonding is in the range of				
17.	Surface defects are dimensional defects.				
18.	In N – type semiconductor, the Hall Coefficient is				
19.	Magnetostriction is the phenomenon of				
20.	The second London equation explains Effect				
III.	STATE WHETHER TRUE OR FALSE:				
21.	Metallic bond is an unsaturated covalent bond.				
22.	Impurities give rise to compositional defects.				
23.	Hall effect can be used to determine whether the given material is metal, insulator (or) Semiconductor.				

..3..

24. Chromium steel is not a permanent magnetic material Critical magnetic field increases if temperature decreases. 25. IV. ANSWER IN ONE OR TWO SENTENCES: 26. Define cohesive energy. 27. Mention any two applications of crystal imperfections (or) point defects. 28. Define Hall Effect. 29. Mention any two uses of soft magnetic materials 30. What is Meissner effect?

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2008-09 & thereafter)

SUBJECT CODE: PH/MC/SS64

B.Sc. DEGREE EXAMINATION APRIL 2012 BRANCH III - PHYSICS SIXTH SEMESTER

COURSE : MAJOR - CORE

PAPER : SOLID STATE PHYSICS

TIME : 2½ HOURS MAX, MARKS : 70

SECTION - B

ANSWER ANY FIVE QUESTIONS:

(5X 5 = 25)

- 1. What is Madelung constant? Obtain the value of madelung constant for a Nacl crystal.
- 2. Explain the difference between edge and Screw dislocation. What is Burger vector?
- 3. Mention the postulates of classical free electron theory.
- 4. Give the theory of Hall effect in the case of a semiconductor.
- 5. Explain the Weiss theory of paramagnetism.
- 6. Compare soft and hard magnetic materials on basis of Hysteresis loop. Give examples.
- 7. Explain BCS theory of superconductors.

SECTION - C

ANSWER ANY THREE QUESTIONS:

(3 X15 = 45)

- 8. Explain with examples the ionic and covalent bonding in crystals.
- 9. What is Frenkel defect? Obtain an expression for the number of Frenkel defects for an Nacl crystal.
- 10. Obtain an expression for electrical and thermal conductivities. Derive Widemann Franz law.
- 11. Discuss Langevins theory of paramagnetism.
- 12. Derive Londons' equation for superconductivity.
