STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2004 – 05 & thereafter)

SUBJECT CODE : MT/PE/TS34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2008 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE: ELECTIVESPAPER: TENSOR ANALYSIS AND SPECIAL THEORY OF RELATIVITY

TIME : 3 HOURS MAX. MARKS : 100

SECTION – A (5 X 8 = 40)

ANSWER ANY FIVE QUESTIONS

- 1. a) Determine whether each of the following quantities is a tensor. If so, state whether it is contravariant or covariant and give its rank.
 - (i) dx^k (ii) $\frac{\partial \phi}{\partial x^k} (x^1, x^2, ..., x^N)$. b) Show that $\frac{\partial A_p}{\partial x^q}$ is not a tensor even though A_p is a covariant tensor of rank one.
- 2. Define metric tensor and conjugate metric tensor. Prove that the angles between the coordinate curves in a three dimensional coordinate system are given by a

$$\cos \theta_{ij} = \frac{g_{ij}}{\sqrt{g_{ii}g_{jj}}}$$
. Hence show that for an orthogonal coordinate system $g_{ii} = \frac{1}{g^{ii}}$.

- 3. A quantity A(p,q,r) is such that in the coordinate system x^i , $A(p,q,r)B_r^{qs} = C_p^s$ where B_r^{qs} is an arbitrary tensor and C_p^s is a tensor. Prove that A(p,q,r) is a tensor.
- 4. Prove that $div A^p = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^k} \left(\sqrt{g} A^k \right)$. Hence express $div A^p$ in terms of its physical

components for spherical polar coordinates.

- 5. Describe the experiment of Michelson and Morley to determine the motion of the earth with respect to the privileged frame of reference. What was the out come of the experiment?
- 6. Obtain the effects of Lorentz equations on length and time measurements in different frames of reference.
- 7. Derive the Euler- Lagrange equation in relativistic analytical mechanics.

SECTION – B $(3 \times 20 = 60)$

ANSWER ANY THREE QUESTIONS

- 8. a) Define Christoffel's symbols of the first and second kind. Obtain their transformation laws and show that they are not tensors.
 - b) Evaluate Christoffel's symbols of the first and second kind for spaces where $g_{pq} = 0$ if $p \neq q$.
- 9. a) Prove the following

(i)
$$\frac{\partial g_{ij}}{\partial x^k} = [ik, j] + [jk, i]$$

(ii) $\frac{\partial g^{ij}}{\partial x^k} = -g^{il} \begin{cases} j \\ k l \end{cases} - g^{jl} \begin{cases} i \\ k l \end{cases}$
(iii) $\begin{cases} i \\ i j \end{cases} = \frac{\partial}{\partial x^j} (\log \sqrt{g})$

b) Prove that the covariant derivation of g_{ij}, g^{ij} and δ_j^i are zero.

- 10. Define Galilean transformations and show that the fundamental laws of classical mechanics are covariant with respect to these transformations.
- 11. a) Derive Lorentz transformation equations.b) Obtain the relativistic law of addition of velocities.
- 12. Define relativistic mass of a particle and obtain the formula for it. Hence define relativistic momentum and relativistic kinetic energy.