SUBJECT CODE : MT/PE/TS34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2008 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE : ELECTIVES
 PAPER : TENSOR ANALYSIS AND SPECIAL THEORY OF RELATIVITY
 TIME
 : 3 HOURS
 MAX. MARKS : 100

SECTION - A
$(5 \times 8=40)$

ANSWER ANY FIVE QUESTIONS

1. a) Determine whether each of the following quantities is a tensor. If so, state whether it is contravariant or covariant and give its rank.
(i) $d x^{k}$
(ii) $\frac{\partial \phi}{\partial x^{k}}\left(x^{1}, x^{2}, \ldots x^{N}\right)$.
b) Show that $\frac{\partial A_{p}}{\partial x^{q}}$ is not a tensor even though A_{p} is a covariant tensor of rank one.
2. Define metric tensor and conjugate metric tensor. Prove that the angles between the coordinate curves in a three dimensional coordinate system are given by $\cos \theta_{i j}=\frac{g_{i j}}{\sqrt{g_{i i} g_{i j}}}$. Hence show that for an orthogonal coordinate system $g_{i i}=\frac{1}{g^{i i}}$.
3. A quantity $A(p, q, r)$ is such that in the coordinate system $x^{i}, A(p, q, r) B_{r}^{q s}=C_{p}^{s}$ where $B_{r}^{q s}$ is an arbitrary tensor and C_{p}^{s} is a tensor. Prove that $A(p, q, r)$ is a tensor.
4. Prove that $\operatorname{div} A^{p}=\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{k}}\left(\sqrt{g} A^{k}\right)$. Hence express $d i v A^{p}$ in terms of its physical components for spherical polar coordinates.
5. Describe the experiment of Michelson and Morley to determine the motion of the earth with respect to the privileged frame of reference. What was the out come of the experiment?
6. Obtain the effects of Lorentz equations on length and time measurements in different frames of reference.
7. Derive the Euler- Lagrange equation in relativistic analytical mechanics.

SECTION - B

$(\mathbf{3} \times 20=60)$

ANSWER ANY THREE QUESTIONS

8. a) Define Christoffel's symbols of the first and second kind. Obtain their transformation laws and show that they are not tensors.
b) Evaluate Christoffel's symbols of the first and second kind for spaces where $g_{p q}=0$ if $p \neq q$.
9. a) Prove the following
(i) $\frac{\partial g_{i j}}{\partial x^{k}}=[i k, j]+[j k, i]$
(ii) $\frac{\partial g^{i j}}{\partial x^{k}}=-g^{i l}\left\{\begin{array}{c}j \\ k \\ l\end{array}\right\}-g^{j l}\left\{\begin{array}{c}i \\ k \\ l\end{array}\right\}$
(iii) $\left\{\begin{array}{c}i \\ i\end{array}\right\}=\frac{\partial}{\partial x^{j}}(\log \sqrt{g})$
b) Prove that the covariant derivation of $g_{i j}, g^{i j}$ and δ_{j}^{i} are zero.
10. Define Galilean transformations and show that the fundamental laws of classical mechanics are covariant with respect to these transformations.
11. a) Derive Lorentz transformation equations.
b) Obtain the relativistic law of addition of velocities.
12. Define relativistic mass of a particle and obtain the formula for it. Hence define relativistic momentum and relativistic kinetic energy.
