STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2004 – 05 & thereafter)

SUBJECT CODE : MT/PC/TO34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2008 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE	: MAJOR – CORE	
PAPER	: TOPOLOGY	
TIME	: 3 HOURS	MAX. MARKS: 100

SECTION – A (5 X 8 = 40)

ANSWER ANY FIVE QUESTIONS

- 1. If E is a complete metric space and if E is the union of a sequence of its subsets, show that the closure of at least one set in the sequence must have non empty interior.
- 2. Let A be an arbitrary non empty subset of a topological space X. Show that $x \in \overline{A}$ if and only if every neighbourhood of x intersects A.
- 3. State and prove Heine Borel theorem.
- 4. Show that a metric space is sequentially compact if and only if it has Bolzone-Weirstrass property.
- 5. Show that every compact subset of a Hausdorff space is closed.
- 6. Show that a subspace of the real line R is connected if and only if it is an interval.
- 7. Show that the product of any non empty class of connected spaces is connected.

SECTION – B $(3 \times 20 = 60)$

ANSWER ANY THREE QUESTIONS

- 8. a) Let X and Y be metric spaces and f a mapping of X in Y. Show that f is continuous if and only if $x_n \to x \Rightarrow f(x_n) \to f(x)$.
 - b) Let $f: X \to Y$ be a mapping of one topological space into another. Show that the following conditions are equivalent.
 - (i) f is continuous
 - (ii) $f^{-1}(E)$ is closed in X for every closed set E in Y.
 - (iii) $\overline{f}(\overline{A}) \subset \overline{f(A)}$ for $A \subset X$. (8+12)
- 9. a) Show that a topological space is compact if every sob basic open cover has a finite subcover.
 - b) State and prove Tychonoff's theorem. (12+8)
- 10. a) State and prove Lebesque covering lemma
 - b) Show that every continuous function defined on a compact space is uniformly continuous. (10+10)

..2

11.	a) Show that compact Hausdurff space is normal.	
	b) State and prove Uryshon Imbedding theorem.	(6+14)

- 12. a) Let *X* be a compact Hausdorff space. Show that *X* is totally disconnected if and only if it has an open base whose sets are also closed.
 - b) Illustrate by examples that connected spaces need not be locally connected and locally connected spaces need not be connected.
