STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2004 – 05 & thereafter)

SUBJECT CODE: MT/PC/CA34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2008 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE	: MAJOR – CORE	
PAPER	: COMPLEX ANALYSIS – PART II	
TIME	: 3 HOURS	MAX. MARKS : 100

$SECTION - A \qquad (5 X 8 = 40)$

ANSWER ANY FIVE QUESTIONS

1. State and prove the mean value property of harmonic functions.

2. Prove that for
$$\sigma = \operatorname{Re} s > 1$$
, $\frac{1}{\varsigma(s)} = \prod_{n=1}^{\infty} (1 - P_n^{-s})$.

- 3. Prove that a family $\not\in$ is totally bounded if and only if to every compact set $E \subset \Omega$ and every $\mathcal{E} < 0$ it is possible to find $f_1, f_2, ..., f_n \in \not\in$ such that every $f \in \not\in$ atisfies $d(f, f_i) < \mathcal{E}$ on E for some f_i .
- 4. State and prove Schwarz-Christoffel formula.
- 5. Prove that a continuous function u(z) which satisfies the mean value property is necessarily harmonic.
- 6. Prove that any two bases of the same module are connected by a unimodular transformation.
- 7. Prove that a nonconstant elliptic function has equally many poles as it has zeros.

SECTION – B $(3 \times 20 = 60)$

ANSWER ANY THREE QUESTIONS

- 8. a) State and prove Poisson's integral formula.
 - b) Prove the functional equation $\zeta(s) = 2^s \pi^{s-1} \sin \frac{\pi s}{2} \Gamma(1-s) \zeta(1-s)$
- 9. State and prove Arzala's theorem.
- 10. State and prove Riemann mapping theorem.

- 11. (a) Prove that $\rho'(z)^2 = 4\rho(z)^3 g_2\rho(z) g_3$
 - (b) Prove that the zeros $a_1, ..., a_n$ and the poles $b_1, ..., b_n$ of an elliptic function satisfy $a_1 + ... + a_n \equiv b_1 + ... + b_n \pmod{M}$.

12. a) Prove that
$$\begin{vmatrix} \rho(z) & \rho'(z) & 1 \\ \rho(u) & \rho'(u) & 1 \\ \rho(u+z) & -\rho'(u+z) & 1 \end{vmatrix} = 0$$

b) Prove that the function $P_U(z) = \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re} \frac{e^{i\theta} + z}{e^{i\theta} - z} U(\theta) d\theta$ is harmonic for

|z| < 1, and prove that $\lim_{x \to e^{i\theta_0}} P_U(z) = U(\theta_0)$ provided that U is continuous

at θ_0 .