STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2004-05\& thereafter)

SUBJECT CODE: MT/PC/CA34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2008
 BRANCH I - MATHEMATICS
 THIRD SEMESTER

COURSE	: MAJOR - CORE
PAPER	$:$ COMPLEX ANALYSIS - PART II
TIME	: 3 HOURS

MAX. MARKS : 100

SECTION - A
 $(5 \times 8=40)$
 ANSWER ANY FIVE QUESTIONS

1. State and prove the mean value property of harmonic functions.
2. Prove that for $\sigma=\operatorname{Re} s>1, \frac{1}{\varsigma(s)}=\prod_{n=1}^{\infty}\left(1-P_{n}^{-s}\right)$.
3. Prove that a family f is totally bounded if and only if to every compact set $E \subset \Omega$ and every $\mathcal{E}<0$ it is possible to find $f_{1}, f_{2}, \ldots, f_{n} \in f$ such that every $f \in f$ atisfies $d\left(f, f_{j}\right)<\mathcal{E}$ on E for some f_{j}.
4. State and prove Schwarz-Christoffel formula.
5. Prove that a continuous function $u(z)$ which satisfies the mean value property is necessarily harmonic.
6. Prove that any two bases of the same module are connected by a unimodular transformation.
7. Prove that a nonconstant elliptic function has equally many poles as it has zeros.
SECTION - B

$$
(3 \times 20=60)
$$

ANSWER ANY THREE QUESTIONS

8. a) State and prove Poisson's integral formula.
b) Prove the functional equation $\varsigma(s)=2^{s} \pi^{s-1} \sin \frac{\pi s}{2} \Gamma(1-s) \varsigma(1-s)$
9. State and prove Arzala's theorem.
10. State and prove Riemann mapping theorem.
11. (a) Prove that $\rho^{\prime}(z)^{2}=4 \rho(z)^{3}-g_{2} \rho(z)-g_{3}$
(b) Prove that the zeros a_{1}, \ldots, a_{n} and the poles b_{1}, \ldots, b_{n} of an elliptic function satisfy $a_{1}+\ldots+a_{n} \equiv b_{1}+\ldots+b_{n}(\bmod M)$.
12. a) Prove that $\left|\begin{array}{ccc}\rho(z) & \rho^{\prime}(z) & 1 \\ \rho(u) & \rho^{\prime}(u) & 1 \\ \rho(u+z) & -\rho^{\prime}(u+z) & 1\end{array}\right|=0$
b) Prove that the function $P_{U}(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Re} \frac{e^{i \theta}+z}{e^{i \theta}-z} U(\theta) d \theta$ is harmonic for
$|z|<1$, and prove that $\lim _{x \rightarrow e^{i \theta_{0}}} P_{U}(z)=U\left(\theta_{0}\right)$ provided that U is continuous at θ_{0}.
