	S	TELLA MARIS COLLEO	GE (AUTONO	OMOUS), CH	ENNAI			
		COURSE PLAN	(November 20)24 – April 20	25)			
Department	: Mathematics							
Name/s of the Faculty	: Dr. A. S. Shanthi							
Course Title	: STOCHASTIC PROCESSES : 23MT/PC/SP44							
Course Code								
Shift	: I							
		COUL	RSE OUTCO	MES (COs)				
COs	Description							
CO1	define the basic concepts in stochastic process							
CO2	demonstrate the ability to use the appropriate statistical tools to solve problems of random process							
CO3	apply the mathematical models under stochastic process							
CO4	analyse the use of concepts in various stochastic models, Markov chains and Martingales							
CO5	evaluate the processes from the point of view of probabilistic theory						K5	
Week	Unit No.	Content	Cognitive Level	Teaching Hours	COs	Teaching Learning Methodology	Assessment Methods	
Nov 18 – 25, 2024 (Day Order 1-6)	1	1.1 Examples ofStochastic Processes1.2 The Poisson Process	K1-K5	5	CO1-CO5	Lecture & Problem Solving	Questioning	

Nov 26- Dec 3, 2024 (Day Order 1 to 6)	1	1.3 Inter arrival andWaiting TimeDistributions1.4 ConditionalDistribution of theArrival Times	K1-K5	5	CO1-CO5	Presentation	Quiz
Dec 4-11, 2024 (Day Order 1 to 6)	1&2	1.5 The M/G/1 Busy Period 2.1 Chapman – Kolmogorov Equations and Classification of States	K1-K5	5	CO1-CO5	Project assignment	Questioning
Dec 12-19, 2024 (Day Order 1 to 6)	2	2.2 Limit Theorems 2.3 Transitions Among Classes, the Gambler's Ruin Problem and Mean Times in Transient Status	K1-K5	5	CO1-CO5	Lecture & Problem Solving	III Component 1 – Seminar (15 marks) Portion: Selected portions from Unit 3- 5
Dec 20, 2024 (Day Order 1)	2	2.4 Branching Process	K1-K5	1	CO1-CO5	Presentation	Questioning
Jan 3 – 7, 2025 (Day Order 3 to 6)	2	2.5.1 A Markov Chain Model of Algorithmic Efficiency 2.5.2 An Application to Runs – A Markov Chain	K1-K5	3	CO1-CO5	Lecture & Problem Solving	Slip test

		with a Continuous State Space								
Jan 8 – 17, 2024 (Day Order 1 to 6)	2 & 3	2.5.3 List Ordering Rules – Optimality of the Transposition Rule 3.1 Continuous – Time Markov Chain	K1-K5	5	C01-C05	Presentation	Questioning			
Jan 18 - 23, 2025		C.A. Test – I(Unit 1 & 2.1-2.4)								
Jan 24 -31, 2025 (Day Order 1 to 6)	3	3.2 Birth and DeathProcesses3.3 The KolmogorovDifferential Equations	K1-K5	5	C01-C05	Project assignment	Quiz			
Feb 3-8, 2025 (Day Order 1 to 6)	3	3.4 Limiting Probabilities	K1-K5	5	C01-C05	Project assignment	Assignment			
Feb 10– 18, 2025 (Day Order 1 to 4)	4	4.1 Stopping Times	K1-K5	3	CO1-CO5	Lecture & Problem Solving	III Component – II (slip test – 20 marks) Portion: 2.5.1-2.5.3			
Feb 19- 26, 2025 (Day Order 1-6)	4	4.2 Azuma's Inequality for Martingales	K1-K5	5	C01-C05	Presentation	Questioning			
Feb 27- Mar 6, 2025 (Day Order 1 to 6)	4	4.3 Submartingales, Supermartingales and the Martingale Convergence Theorem	K1-K5	5	C01-C05	Project assignment	Slip test			

Ma r 7 – 11, 2025 (Day Order 1 to 3)	5	 5.1 Hitting Times, Maximum Variable and Arc Sine Laws 5.2.1 Brownian motion Absorbed at a Value 5.2.2 Brownian Motion Reflected at the Origin 	K1-K5	3	CO1-CO5	Lecture & Problem Solving	Questioning	
Mar 12 –17, 2025	C.A. Test – II (Unit 3 & 4.1, 4.2)							
Mar 18 – 20, 2025 (Day 4 to 6)	5	5.2.3 Geometric Brownian Motion 5.2.4 Integrated Brownian Motion	K1-K5	2	CO1-CO5	Presentation	III Component – III – Quiz – 15 marks Portion: 4.3- 5.1-5.2.2	
Mar 21 - 28, 2025 (Day Order 1 to 6)	5	5.3.1 Using Martingales to Analyze Brownian Motion	K1-K5	5	C01-C05	Project assignment	Slip test	
Mar 29- April 2, 2025 (Day Order 1 to 3)				REVISION				

•