STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086 (For candidates admitted from the academic year 2023 – 2024 & thereafter)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2024 PHYSICS FIRST SEMESTER

COURSE:MAJOR ELECTIVEPAPER:CRYSTAL PHYSICSSUBJECT CODE:23PH /PE/CP15TIME:3 HOURS

MAX. MARKS: 100

Q. No.	SECTION A (10 x 3 = 30) Answer <u>ALL</u> questions	со	KL
1	What is nucleation in crystal theory?	CO1	K1
2	Recall the important aspect of Becker and Doring concept?	CO1	K1
3	Write the expression for dispersion relations in lattice dynamics.	CO1	K1
4	List out the important parameters of anharmonic effect.	CO2	K2
5	How do we determine a crystallite size?	CO2	K2
6.	Mention the processes of single and double diffusion methods.	CO2	K2
7.	Give the significance of sublimation and condensation principle in vapour growth.	CO2	K2
8.	Write the principle of Differential Scanning Calorimetry (DSC).	CO3	K3
9.	What is cholestic phase in liquid crystals?	CO3	K3
10.	Write the electric and magnetic property of liquid crystals.	CO3	K3
Q. No.	SECTION B (2 x 5 = 10) PART A (Answer any <u>TWO</u> out of three questions)	со	KL
11.	Estimate the hardness number and work hardening coefficient utilizing Vickers hardness testing	CO3	K3
12.	Explain the important significance of Einstein model of lattice heat capacity.	CO3	K3
13.	Explain the free energy formation of a spherical nucleus and cylindrical nucleus.	CO3	K3
Q. No.	SECTION B (4 x 5 = 20) PART B (Answer any <u>FOUR</u> out of five questions)	СО	KL
14.	Examine Umklapp process with appropriate diagram.	CO4	K4
15.	Discuss the different types of Symmetry operations in crystal with suitable examples.	CO4	K4
16.	Analyze the Physical Vapour Transport (PVT) technique.	CO4	K4
17.	Summarize the working of Differential Thermal Analysis (DTA).	CO4	K4

23PH/PE/CP15

18.	Explain the applications of liquid crystals in different fields.	CO4	K4
	SECTION C (2 x 20 = 40) (Answer ALL the questions)	со	KL
19.	a) Distinguish between homogenous and heterogeneous nucleation.b) Illustrate the Czochralski technique and controlling parameter in crystal pulling mechanism with suitable diagram.		K5
	(OR)		
	 c) Discuss the acoustic and optical modes in a one-dimensional atomic crystal. d) Explain in detail the Bridgman method of melt growth to grow single crystals with suitable diagram. 	CO5	K5
20.	 a) Interpret the principle, construction and working of X-Ray diffraction (XRD) in the field of crystallography with a neat diagram. b) Explain the different types of liquid crystals and its phase transition in liquid phases. 	CO5	K5
	(OR)		
	c) Explain the Gibbs Thomson equations for vapour and solution.d) Discuss the Debye Model of heat capacity in lattice dynamics.	CO5	K5
