STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086 (For candidates admitted from the academic year 2023 – 2024 and thereafter)

M.Sc. DEGREE EXAMINATION NOVEMBER 2024 PHYSICS THIRD SEMESTER

COURSE :	MAJOR CORE
PAPER :	SOLID STATE PHYSICS
SUBJECT CODE:	23PH /PC/SS34
TIME :	3 HOURS

MAX. MARKS: 100

Q. No.	SECTION A	CO	KL
•	Answer ALL the Questions: (10 x 3 = 30 marks)		
1	Define phase velocity and group velocity.	CO1	K1
2	State Hund's rule.	CO1	K1
3	Write the relation connecting the dielectric constant and	CO1	K1
	dielectric susceptibility.		
4	How did the Einstein theory explain the failure of Dulong	CO2	K2
	and Petit law?		
5	The conductivity of metals decreases while that of	CO2	K2
	semiconductors increases with rise in temperature.		
	Explain.		
6	How does the band theory lead to the concept of negative	CO2	K2
	effective mass.		
7	Explain Bloch wall and the domain wall energy.	CO2	K2
8	How does the total polarizability depend on frequency?	CO3	K3
9	Explain how the electron-phonon interaction helps to	CO3	K3
	produce the Cooper pairs.		
10	How does superconducting transition temperature vary	CO3	K3
	with magnetic field?		
Q. No.	SECTION B (30 marks)	CO	KL
	PART A (PROBLEM SECTION)		
	Answer any TWO Questions: $(2 \times 5 = 10 \text{ marks})$		
11	The velocities of longitudinal and transverse waves in	CO3	K3
	Aluminium are 6374 and 3111 m/s, respectively. Calculate		
	the Debye frequency and the Debye temperature for		
	Aluminium (Assume that there are 6.02×10^{28} atoms per m ³		
	in Aluminium).	~ ~ ~	
12	The Curie temperature of Iron is 1043 K. Assume that Iron	CO3	K3
	atoms, when in metallic form have moments of 2 Bohr		
	magneton per atom. Iron is body centered cube with lattice		
	parameter $a = 0.286$ nm. Calculate the Curie constant.		

13	The polarizability of NH ₃ molecule is found	CO3	K3
	experimentally by the measurement of dielectric constant		
	as 2.42×10^{-39} Fm ² and 1.74×10^{-39} Fm ² at 309 K and 448 K		
	respectively. Calculate for each temperature the		
	polarizability due to permanent dipole moment and due to		
	deformation of molecules.		
	PART B		
	Answer any FOUR Questions: (4 x 5 = 20 marks)		
14	Discuss, qualitatively, the concept of phonons for elastic	CO4	K4
	vibration in a solid. Enumerate the properties of phonons.		
15	Discuss the thermoelectric effects in semiconductors.		K4
16	Describe the behavior of magnetic substances with reference to their Curie points.		K4
17	Explain the polarization in dielectrics. Arrive at the	CO4	K4
	relation between the dielectric constant and atomic		
	polarizability.		
18	Explain Meissner effect and distinguish between type I	CO4	K4
	and type II superconductors.		
Q. No.	SECTION C	CO	KL
	Answer the following: $(2 \times 20 = 40 \text{ marks})$		
19	a) List out the assumptions of Einstein's theory of specific	CO6	K6
	heat capacity and estimate the specific heat capacity of a		
	monoatomic crystalline solid. Point out its limitations.		
	b) Discuss the Kronig-Penney model by considering	CO5	K5
	characteristic features of electron propagation in crystals.		
	(OR)		
	c) Discuss the condition for setting up the optical and acoustical branches based on the lattice vibrations in a	CO6	K6
	linear diatomic lattice.		
	d) Deduce Clausius-Mosotti equation to determine the	CO5	K5
	dipole moment of a polar molecule from the dielectric		
20	constant measurements.	00(17.6
20	a) Based on the Weiss theory of ferromagnetism, obtain an	CO6	K6
	expression for magnetization and illustrate its variations		
	with temperature with necessary plots.	COF	V5
	b) With suitable diagrams, discuss Hall effect in	CO5	K5
	semiconductors and highlight the significance of Hall coefficient.		
	(OR)	<u>CO4</u>	V.
	c) Describe Langevin's theory for a paramagnetic gas and its limitations. Obtain paramagnetic susceptibility of a free	CO6	K6
	electron gas employing quantum statistics.		
	d) Explain London's theory with London penetration	CO5	K5
