STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086 (For candidates admitted from the academic year 2023 – 2024 and thereafter)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2024 BRANCH III - PHYSICS THIRD SEMESTER

COURSE :	;	MAJOR CORE
PAPER :		QUANTUM MECHANICS I
SUBJECT CODE	:	23PH /PC/QM34
TIME :	;	3 HOURS

MAX. MARKS: 100

Q. No.	SECTION A	CO	KL
	Answer ALL Questions(10 x 3 = 30 marks)		
1	What are the conditions that the wave function must obey?	CO1	K1
2	Write the general wave function of a harmonic oscillator.	CO1	K1
3	State Stark effect.	CO1	K1
4	What are ladder operators? Why are they called so?	CO2	K1
5	When do you say two functions are orthonormal?	CO2	K2
6	Are the rigid rotator energy levels degenerate? Explain.	CO2	K2
7	Explain the variational principle.	CO2	K2
8	State the commutation relations obeyed by the components of	CO3	K2
	angular momentum and express them in vector notation.		
9	Illustrate the scattering amplitude.	CO3	K3
10	Explain partial waves.	CO3	K3
Q. No.	SECTION B (8 x 5 = 40 marks)	CO	KL
	PART A		
	Answer any TWO Questions $(2 \times 5 = 10)$		
11	Show that the zero point energy of $\frac{1}{2}$ h ω of a linear harmonic	CO3	K3
	oscillator is a manifestation of the uncertainty principle.		
12	A rigid rotator is constrained to rotate about a fixed axis. Find	CO3	K3
	out its normalized eigenfunctions and eigenvalues.		
13	Obtain the energy levels of a symmetric top molecule with	CO3	K3
	principal moments of inertia $I_1 = I_2 = I \neq I_3$		
	PART B		
	Answer any SIX Questions $(6 \times 5 = 30)$		
14	In a one-dimensional crystal, the periodicity of the potential led	CO4	K4
	to the concept of energy bands-Explain.		
15	Examine the hydrogen atom problem in detail and find its energy	CO4	K4
	level.		
16	Explain the need for WKB approximation.		K4
17	How many angular momentum states arise for a system with two		K4
	angular momenta $j_1 = 1$ and $j_2 = 1/2$		
18	8 Derive an expression for scattering length of a square well		K4
	potential.		
19	Describe the precession of electron in a magnetic field.	CO4	K4
20			K4
	and J _z .		
21	Explain Clebsh – Gordan coefficients with their significance.	CO4	K4

Q. No.	SECTION C	CO	KL
	Answer any TWO Questions(2x15=30 marks)		
22	Write the Schrodinger equation and the form of the wave function in the different regions of a square well with finite depth.	CO5	K5
23	Formulate perturbation theory for degenerate levels and apply it to explain the Stark effect in the $n=2$ level of the Hydrogen atom. Point out the effect of perturbation on the degeneracy of the state.	CO5	К5
24	Explain a method used to calculate the scattering differential cross section and Born approximation.	CO5	K5
25	Solve the Eigenvalue problem for the one-dimensional quantum harmonic oscillator.	CO5	K5
