STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2023 – 2024 & thereafter)

M.Sc., DEGREE EXAMINATION NOVEMBER 2024 PHYSICS FIRST SEMESTER

COURSE : MAJOR CORE PAPER : ELECTRONICS SUBJECT CODE : 23PH/PC/EL14

TIME : 3 HOURS MAX. MARKS : 100

Q. No.	SECTION A	CO	KL
	Answer ALL Questions (10 x 3 = 30 marks)		
1	Define transconductance.	CO1	K1
2	Define active filters and explain how they are better than	CO1	K1
	passive filters.		
3	Define Z- parameter in transistor.	CO1	K1
4	What are BSR mode and I/O mode in 8255?	CO2	K1
5	Differentiate between a counter and a register.	CO2	K2
6	What is the application of JK flip flop in toggle mode?	CO2	K2
7	How does an op-amp work as an integrator?	CO2	K2
8	Describe the operation of control signals of 8255.	CO3	K2
9	Explain the purpose of using FET as common drain	CO3	K3
	amplifier (or source follower).		
10	Discuss the function of memory READ cycle in 8085	CO3	К3
	programming.		
Q. No.	SECTION B $(6 \times 5 = 30 \text{ marks})$	CO	KL
	PART A		
	Answer any TWO Questions $2 \times 5 = 10$		
11	Determine the voltage gain, current gain and input	CO3	K3
	impedance of a CE amplifier using a transistor of h		
	parameter constants $h_{ie} = 1200$ ohm; $h_{re} = 0$ and $h_{fe} = 36$; h_{oe}		
	$=2X10^{-6}$ mho and a load resistance $R_c = 2500$ ohm.		
12	Vin Φ Vout 340 pF	CO3	К3
13	Write an assembly language program to add two 32 bit	CO3	К3
	numbers.	i	

	PART B		
	Answer any FOUR Questions $4 \times 5 = 20$		
14	Explain the working of CMOS NAND gate logic function.	CO4	K4
15	Discuss briefly the construction, working and characteristics	CO4	K4
	of SCR.		
16	Explain the working of monostable multi-vibrator with 555	CO4	K4
	timer circuit.		
17	What is a flag? Discuss the functions of various flags	CO4	K4
	available in μP 8085.		
18	Explain the different operational modes in 8255.	CO4	K4
Q. No.	SECTION C	CO	KL
	Answer ALL Questions $(2 \times 20 = 40 \text{ marks})$		
19 (i)	A) Explain the memory mapped I/O and I/O mapped I/O.	CO5	K5
	B) Design op-amps circuit to solve simultaneous equations,	CO5	K6
	-4x + y = 1 and $6x - 5y = 9$		
	(OR)		
19 (ii)	A) What are up/down counters? Discuss their working in 4-	CO5	K5
	bit binary up/down counter and verify its truth table.		
	B) Explain the interfacing of DAC and ADC with	CO5	K6
	Programmable peripheral interface 8255.		
20 (i)	A) Sketch and discuss the architecture of 8085.	CO5	K5
	B) What is race-around in JK flip-flops? Explain in detail the	CO5	K6
	design of a master-slave digital circuit to avoid the race-		
	around condition.		
	(OR)		
20 (ii)	A) Illustrate the procedure for solving a second order	CO5	K5
	differential equation. Solve the differential equation using		
	op-amp based integrators circuit.		
	$\frac{d^2 v}{dt^2} = -20 \frac{dv}{dt} - 100v + 25$		
	B) Design and discuss the operation of a 4-bit shift right	CO5	K6
	shift register using D flip-flops. Mention its role in serial		
	communication.		
	•		
