STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 86 (For candidates admitted from the academic year 2023 – 2024 and thereafter)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2024 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE	:	ELECTIVE	
PAPER	:	NUMBER THEORY A	ND CRYPTOGRAPHY
SUBJECT CODE	:	23MT/PE/NC15	
TIME	:	3 HOURS	MAX. MARKS: 100

Q. No.	SECTION A $(5 \times 2 = 10)$	CO	KL
	Answer ALL questions		
1.	What is the decimal equivalence of $(N \ O \ W)_{26}$?	1	1
2.	Define the Legendre symbol.	1	1
3.	Define cryptosystem.	1	1
4.	What is Hash function?	1	1
5.	Define a strong pseudoprime.	1	1

Q. No.	SECTION B $(10 \times 1 = 10)$	CO	KL
	Answer ALL questions		
6.	The decimal equivalent of $(1011)_2$ is	2	2
	a) 11 b) 12 c) 21 d) 22		
7.	The g.c.d. of (360, 294) is	2	2
	a) 14 b) 4 c) 16 d) 6		
8.	The order of a non-zero element is the least positive power that	2	2
	gives		
	a) 1 b) 10 c) 0 d) same element		
9.	A generator g of a finite field F_q is an element of order	2	2
	a) $q - 1$ b) $q + 1$ c) $q^2 - 1$ d) $q^2 + 1$		
10.	A message unit cannot be a	2	2
	a) single letter b) digraph c) trigraph d) block of 23 letters		
11.	The map is the map $C = aP + b \mod N$ where <i>a</i> and <i>b</i> are	2	2
	enciphering keys is		
	a) linear b) affine c) shift d) all of the above		
12.	A function in cryptosystem whose inverse is hard to compute is	2	2
	called as a function.		
	a) encipher b) decipher c) trapdoor d) shift		
13.	The last names of the inventors of RSA are	2	2
	a) Reagen, Shamir & Adleman b) Reagen, Shanine & Aden		
	c) Rivest, Shamir & Adleman d) Rivest, Shamir & Aden		
14.	The smallest pseudoprime to the base 2 is	2	2
	a) 301 b) 311 c) 353 d) 341		
15.	The factor of 91 using $f(x) = x^2 + 1 \& x_0 = 1$ is	2	2
	a) 5 b) 3 c) 7 d) 21		

	/2/ 23MT/PE/N		
Q. No.	SECTION C $(2 \times 15 = 30)$	CO	KL
	Answer ANY TWO questions		
16.	State and prove Fermat's Little theorem and hence prove if <i>a</i> is not	3	3
	divisible by p and if $n \equiv m \mod (p-1)$, then $a^n \equiv a^m \mod p$.		
17.	a) Construct a field with 9 elements.	3	3
	b) Prove that $\left(\frac{a}{p}\right) \equiv a^{\left(\frac{p-1}{2}\right)} mod p.$ (8+7)		
18.	Find the solution for the following system of simultaneous	3	3
	congruences:		
	$2x + 3y \equiv 1 \pmod{26}$		
	$7x + 8y \equiv 2 \pmod{26}$		
19.	Explain about	3	3
	(i) Classical cryptosystem versus private key cryptosystem		
	(ii) Authentication. (8+7)		

Q. No.	SECTION D $(2 \times 15 = 30)$	CO	KL
	Answer ANY TWO questions		
20.	Find the smallest nonnegative solution of the following system of	4	4
	congruences:		
	$x \equiv 2 \mod 3$; $x \equiv 3 \mod 5$; $x \equiv 4 \mod 11$; $x \equiv 5 \mod 16$.		
21.	a) With usual notations prove that $G^2 = (-1)^{\frac{q-1}{2}}q$.	4	4
	b) Determine whether 7411 is a residue modulo the prime		
	9283. (10+5)		
22.	Intercept the coded message "DXM SCE DCCUVGX", which was	4	4
	enciphered using an affine map on digraphs in a 30 – letter		
	alphabet, in which $A - Z$ have numerical equivalents $0 - 25$,		
	blank = 26, ? = 27, ! = 28, ' = 29. A frequency analysis shows that		
	the most common digraphs in earlier cipher texts are "M ", "U "		
	and "IH", in that order. Suppose that in the English language the		
	most frequently occurring digraphs are "E", "S" and "T", in that		
	order.		
	a) Find the deciphering key and read the message		
	b) Find the enciphering key and encrypt the message "A DEMO"		
23.	If <i>n</i> is an strong pseudoprime to the base <i>b</i> , then prove that it is an	4	4
	Euler pseudoprime to the base <i>b</i> . Is the converse true? Justify.		

Q. No.	SECTION E $(2 \times 10 = 20)$	CO	KL
	Answer ANY TWO questions		
24.	Find an upper bound for the number of bit operations required to	5	5
	compute <i>n</i> !		
25.	State and prove the law of quadratic reciprocity.	5	5
26.	Decipher the message "FQOCUDEM" which is enciphered using	5	5
	shift transformation on single letters of 26 alphabets. Given that the		
	letter "U" in the coded message is "E".		
27.	Prove that if <i>n</i> is an odd composite integer and if <i>n</i> is divisible by a	5	5
	perfect square greater than 1, then <i>n</i> is not a Carmichael number.		