STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 86 (For candidates admitted from the academic year 2023 – 2024 and thereafter)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2024 BRANCH I - MATHEMATICS FIRST SEMESTER : MAJOR CORE : REAL ANALYSIS CODE : 23MT/PC/RA14

SUBJECT CODE:23MT/PC/TIME:3 HOURS

COURSE

PAPER

MAX. MARKS: 100

Q.	SECTION A $(5 \times 2 = 10)$	CO	KL
No.	Answer ALL questions		
1.	Define adherent point of a subset of R^n and give an example.	1	1
2.	Give an example of a function which is of bounded variation.	1	1
3.	What is meant by matrix of a linear function?	1	1
4.	Find an example to show the existence of Riemann-Stieltjes integral can be altered by changing the value of f at a single point.	1	1
5.	Define Jacobian determinant and obtain the Jacobian determinant	1	1
	of a complex-valued function.		

Q.	SECTION B $(10 \times 1 = 10)$	CO	KL
No.	Answer ALL questions		
6.	The function f is said to be differentiable at c if there exists a	2	2
	linear function $T_c: \mathbb{R}^n \to \mathbb{R}^m$ such that		
	(a) $f(c + v) = f(c) - T_c(v) + v E_c(v)$		
	(b) $f(c + v) = f(c) + T_c(v) + v E_c(v)$		
	(c) $f(c + v) = f(c) + T_c(v) - v E_c(v)$		
7.	If x is an accumulation point of S in \mathbb{R}^n , then every n – ball	2	2
	B(x) contains points of S.		
	(a) finitely many (b) infinitely many (c) no		
8.	The set of rational numbers has every as an	2	2
	accumulation point.		
	(a) irrational number (b) real number (c) rational number		
9.	The function f satisfies condition if	2	2
	$ f(y) - f(x) \le A y - x .$		
	(a) Lipschitz (b) Riemann (c) Liouville's		
10.	If <i>f</i> is differentiable at <i>a</i> and if $\nabla f(a) = 0$, the point <i>a</i> is called a	2	2
	point of <i>f</i> .		
	(a) Saddle (b) stationary (c) unique		

..2

			•
11.	The real line R^1 is covered by the collection of all	2	2
	(a) open intervals (a, b)		
	(b) closed intervals [a, b]		
	(c) half open intervals.		
12.	Boundedness of f' is not necessary for f to be of	2	2
	(a) bounded variation (b) total variation (c) Riemann integrable		
13.	If $f \in R(\alpha)$ and if $g \in R(\alpha)$ on [a,b] then on [a,b].	2	2
	$(a) c_1 f + c_2 g \not\subset R(\alpha)$		
	(b) $c_1 f + c_2 g \notin R(\alpha)$		
	(c) $c_1 f + c_2 g \in R(\alpha)$		
14.	provide connecting link between Riemann-Stieltjes	2	2
	integrals and finite sums.		
	(a) Step functions		
	(b) Euler's summation formula		
	(c) none of these.		
15.	If f is differentiable at c then f isat c .	2	2
	(a) Not continuous (b) continuous (c) not zero		

Q.	SECTION C $(2 \times 15 = 30)$	CO	KL
No.	Answer ANY TWO questions		
16.	a) Let A be a subset of \mathbb{R}^n and let F be an open covering of A.	3	3
	Prove that there is a countable subcollection of F which also		
	covers A.		
	b) Let f be defined on $[a, b]$. Then prove that f is of bounded		
	variation on $[a, b]$ if, and only if, f can be expressed as the		
	difference of two increasing functions. (8+7)		
17.	State and prove Bolzano-Weierstrass theorem.	3	3
18.	a) State and prove chain rule in terms of total derivatives.	3	3
	b) Relating the total derivative to directional derivative prove that		
	the total derivative is unique if it exists. (10+5)		
19.	a) State and prove first mean-value theorem for Riemann-	3	3
	Stieltjes integrals.		
	b) Show that continuous partial derivatives is locally one- to-one		
	near a point where the Jacobian determinant does not vanish.		
	(7+8)		

Q.	SECTION D $(2 \times 15 = 30)$	CO	KL
No.	Answer ANY TWO questions		
20.	Analyze the equivalence conditions of the following statements	4	4
	for a subset S of \mathbb{R}^n :		
	(i) <i>S</i> is compact.		
	(ii) S is closed and bounded.		
	(iii) Every infinite subset of <i>S</i> has an accumulation point in <i>S</i> .		
21.	a) Prove that if <i>f</i> and <i>g</i> are each of bounded variation on [a, b],	4	4
	then their sum and product are also of bounded variation.		
	b) State and prove the second-derivative test for extrema.		
	(5+10)		
22.	a) Assume that $\alpha \nearrow$ on $[a, b]$, if P' is finer than P , then prove that	4	4
	$U(P', f, \alpha) \leq U(P, f, \alpha).$		
	b) State and prove the formula for integration by parts in		
	Riemann- Stieltjes Integral. (5+10)		
23.	a) Obtain Taylor's Formula.	4	4
	b) Analyze the consequences of the additive property on the study		
	of the total variation as a function of the right end point. (8+7)		

Q.	SECTION E $(2 \times 10 = 20)$	CO	KL
No.	Answer ANY TWO questions		
24.	Evaluate whether the function $f(x) = x \cos\left(\frac{\pi}{2x}\right)$, $x \neq 0$ and	5	5
	f(x) = 0, $x = 0$ over the interval [0, 1] is of bounded variation		
	on [0, 1].		
25.	Illustrate with an example the matrix form of chain rule.	5	5
26.	State and prove the inverse function theorem	5	5
27.	Assume α is of bounded variation on $[a, b]$. Let $V(x)$ denote the	5	5
	total variation of α on $[a, x]$ if $a < x \le b$, and let $V(a) = 0$. Let f		
	be defined and bounded on $[a, b]$. If $f \in R(\alpha)$ on $[a, b]$, then prove		
	that $f \in R(V)$ on $[a, b]$.		