STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 86 (For candidates admitted from the academic year 2023 – 2024 and thereafter)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2024 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE	:	MAJOR CORE	
PAPER	:	PARTIAL DIFFERENTIAI	L EQUATIONS
SUBJECT CODE	:	23MT/PC/PD34	
TIME	:	3 HOURS	MAX. MARKS: 100

Q.	SECTION A $(5 \times 2 = 10)$	CO	KL
No.	Answer ALL questions		
1.	Discuss the classification of the second order PDE.	1	1
2.	What is a Neumann boundary condition?	1	1
3.	What is the physical significance of the diffusion equation?	1	1
4.	What are the initial conditions for solving a vibrating string problem?	1	1
5.	Give the physical interpretation of Green's function.	1	1

Q.	SECTION B $(10 \times 1 = 10)$	CO	KL
No.	Answer ALL questions		
6.	The equation $x^2(y-1)z_{xx} - x(y^2-1)z_{xy} + y(y^2-1)z_{yy} + z_x = 0$	2	2
	is hyperbolic in the entire xy – plane except along		
	(a) x -axis (b) a line parallel to y -axis		
	(c) y -axis (d) a line parallel to x -axis		
7.	Which of the following methods is used to find integral surfaces passing	2	2
	through a given curve?		
	(a) Method of Characteristics (b) Charpit's Method		
	(c) Separation of Variables (d) Laplace Transform		
8.	The complete integral of the PDE $z = px + qy - \sin(pq)$ is	2	2
	(a) $z = ax + by + sin(ab)$ (b) $z = ax + by - sin(ab)$		
	(c) $z = ax + y + \sin(a)$ (d) $x + by - \sin(a)$		
9.	The solution of the initial value problem $u_{tt} = 4u_{xx}, t > 0, -\infty < x < 0$	2	2
	∞ satisfying the conditions $u(x, 0) = x, u_t(x, 0) = 0$ is		
	(a) x (b) $\frac{x^2}{2}$ (c) $2x$ (d) $2t$		
10.	The Cauchy problem for first-order PDEs typically involves which of the	2	2
	following conditions?		
	(a) Dirichlet condition		
	(b) Neumann condition		
	(c) Initial condition along a characteristic curve		
	(d) None of the above		
11.	Which of the following equations is classified as elliptic?	2	2
	(a) Laplace Equation (b) Heat Equation		
10	(c) Wave Equation (d) Schrodinger Equation		2
12.	In solving elliptic PDEs using the method of separation of variables,	2	2
	which assumption is commonly made about the solution?		
	(a) It is a product of functions, each depending on only one variable(b) It is constant		
	(c) It satisfies the Neumann boundary condition(d) None of the above		

13.	Which of the following is the delta function used in the solution of	2	2
	diffusion equations?		
	(a) Green's Function (b) Heaviside Delta Function		
	(c) Dirac Delta Function (d) Bessel Function		
14.	D'Alembert's solution is specifically used for which of the following	2	2
	equations?		
	(a) Laplace Equation (b) Heat Equation		
	(c) Wave Equation (d) Diffusion Equation		
15.	The method of images is applied to solve PDEs for which type of	2	2
	boundary conditions?		
	(a) Periodic (b) Dirichlet (c) Mixed (d) Robin		

Q. No.	SECTION C $(2 \times 15 = 30)$ Answer ANY TWO questions	CO	KL
16.	Find the integral surface of the linear PDE which contains the circle defined by $x^2 + y^2 + z^2 = 4$, $x + y + z = 2$.	3	3
17.	The ends A and B of a rod, 10cm in length, are kept at temperatures $0^{\circ}C$ and $100^{\circ}C$ until the steady state condition prevails. Suddenly the temperature at the end A is increased to $20^{\circ}C$, and the end B is decreased to $60^{\circ}C$. Find the temperature distribution in the rod at time t.	3	3
18.	Derive the one-dimensional wave equation and also obtain its periodic solution.	3	3
19.	Determine the Green's function for the Helmholtz equation for the half- space $z \ge 0$.	3	3

Q.	SECTION D $(2 \times 15 = 30)$	CO	KL
No.	Answer ANY TWO questions		
20.	Show that the PDEs $xp - yq = x$ and $x^2p + q = xz$ are compatible and	4	4
	hence find their solution.		
21.	Define and solve the interior Dirichlet problem for a circle.	4	4
22.	Discuss the solution of non-homogeneous equation of forced vibrations	4	4
	of a finite string due to an external driving force.		
23.	Use Green's function technique to solve the heat conduction equation	4	4
	with no sources present.		

Q.	SECTION E $(2 \times 10 = 20)$	CO	KL
No.	Answer ANY TWO questions		
24.	Use Charpit's method to solve $p^2x + q^2y = z$.	5	5
25.	Derive the Laplace equation.	5	5
26.	An infinite one-dimensional solid defined by $-\infty < x < \infty$ is maintained at zero temperature initially. There is a heat source of strength $g_s(t)$ units, situated at $x = \xi$, which releases constant heat continuously for t > 0. Find the expression for the temperature distribution in the solid for $t > 0$.	5	5
27.	Show that the Green's function $G(r, r')$ has the symmetric property.	5	5