STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 86 (For candidates admitted from the academic year 2023 – 2024 and thereafter)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2024 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE	:	MAJOR CORE	
PAPER	:	ORDINARY DIFFEREN	TIAL EQUATIONS
SUBJECT CODE	:	23MT/PC/OD14	
TIME	:	3 HOURS	MAX. MARKS: 100

Q. No.	SECTION A $(5 \times 2 = 10)$	CO	KL
	Answer ALL questions		
1.	Define Wronskian and state wronskian condition for	1	1
	two linearly independent functions $x_1(t)$, $x_2(t)$.		
2.	State a non-homogenous linear system of n – equations.	1	1
3.	Define an analytic function in power series expansion.	1	1
4.	State Gronwall Inequality.	1	1
5.	State Sturm-Liouville boundary-value problem.	1	1

Q. No.	SECTION B $(10 \times 1 = 10)$	CO	KL
	Answer ALL questions		
6.	The Wronskian of the functions $\{e^x, sinx, cosx\}$ is	2	2
	a) 0 b) $2e^x$ c) $2sinx$ d) 1		
7.	The particular solution of $t^2 x'' - 2x = 2t - 1, 0 < t < $	2	2
	∞ is		
	a) $\frac{1}{2} - t$ b) $1 - t$ c) $logt$ d) 0		
8.	A solution matrix \emptyset of the differential equation $X' =$	2	2
	$A(t)X, t \in I$ is a fundamental matrix $x' = A(t)x, t \in I$ if		
	and only if		
	a) det $\emptyset \neq tr A$ b) det $\emptyset = 0$		
	c) det $\emptyset \neq 0$ d) None of these		
9.	The general non-zero solution $e^{At+A\omega}$ of $x' = Ax$ is said	2	2
	to be a periodic function with period ω if the solution		
	equals to		
	a) e^c b) e^{At} c) $e^{A\omega}$ d) $log\omega$		
10.	The Hermite equation $x'' - 2tx' + 2x = 0$ has an ordinary	2	2
	point at		
	a) $t = 1$ b) $t = 0$ c) $t = \infty$ d) None of these		
11.	For the Bessel's equation $t(t-1)^2(t+3)x'' + t^2x' - t^2x' - t^2x' + t^2x' - t^2x' - t^2x' + t^2x' - t^2x' + t^2x' - t^2x' + t^2x' + t^2x' - t^2x' + t^2x' +$	2	2
	$(t^2 + t - 1)x = 0, t \neq \{0, 1, -3\}$, the regular singular		
	points are		
	a) $0, 1, -3$ b) $1, -3$ c) $0, -3$ d) None of these		

/2/ 23MT			PC/O	D14
12.	If the linear forms V_1 , V_2 satisfy the relation $V_1 = KV_2$		2	2
	where K is a scalar, then V_1 , V_2 are said to be			
	a) Linearly dependent c) Linearly Independent			
	b) Orthogonal d) None of these			
13.	The linear combination of set of solutions is also a soluti	on	2	2
	of ODE by the method called			
	a) Principle of variation c) Variable separable			
	method			
	b) Principle of superposition d) Dominance Propert	-	-	
14.	A linear BVP $L(x) = a(t)x'' + b(t)x' + c(t)x = 0, A \le 0$	≤	2	2
	$t \leq B$ is singular if and only if			
	a) Either $A = -\infty$ or $B = \infty$ only			
	b) Both $A = -\infty$ and $B = \infty$ only			
	c) $a(t) = 0$ for atleast one point t in [A, B] only			
	d) All of the above			
15.	The eigen functions \emptyset_m and \emptyset_n are orthogonal with resp	ect	2	2
	to the weight function $r(x)$ on $[a, b]$ if it satisfies the			
	condition			
	a) $\int_{a}^{b} \phi_{m}(x)\phi_{n}(x)r(x)dx = 0$			
	b) $\int_a^b \phi_m(x)\phi_n(x)r(x)dx = \infty$			
	c) $\int_a^b \phi_m(x)\phi_n(x)r(x)dx \neq 0$			
	d) $\int_a^b \phi_{mn}(x) dx \neq 0$			

Q. No.	SECTION C $(2 \times 15 = 30)$	CO	KL
	Answer ANY TWO questions		
16.	a) State and prove Abel's formula for n^{th} order linear non-	3	3
	homogeneous differential equation.		
	b) Solve the IVP $x'' - 2x' + x - 0$; $x(0) = 0$, $x'(0) = 1$		
	(10+5)		
17.	a) Let $A; I \to M_n(R)$ be continuous. Suppose a matrix \emptyset	3	3
	satisfies $X' = A(t)X$, $t \in I$. Prove that $det \emptyset$ satisfies the		
	equation $(det\emptyset)' = (trA)(det\emptyset)$.		
	b) Compute ordinary and singular points of the ODE		
	$(1 - x^2)y'' - 6xy' - 4y = 0$. State the condition under		
	which the singular point becomes regular. $(10+5)$		
18.	Find the solution to the ODE $y' = y - 1$; $y(0) = 2$ up to	3	3
	fourth approximation by Picard's approximation theorem.		
19.	Consider a one-dimensional rod of length c whose end	3	3
	points are insulated and $f(x)$, $0 < x < c$ is the temperature		
	distribution at $t = 0$. Formulate the boundary-value problem		
	to this physical phenomena and determine its temperature		
	function.		

1	2	I
I	J	/

Q. No.	SECTION D $(2 \times 15 = 30)$	CO	KL
	Answer ANY TWO questions		
20.	a) Let $b_1, b_2,, b_n$ be real and continuous functions defined on an interval <i>I</i> and $\phi_1, \phi_2,, \phi_n$ are <i>n</i> solutions of $L(x)(t) = 0, t \in I$ existing on <i>I</i> . Prove that these solutions are linearly independent on <i>I</i> if and only if $W(t) \neq 0, t \in I$.	4	4
	b) State and prove orthogonal property of Legendre polynomials. (9+6)		
21.	 a) Prove that the set of all solutions of the system x' = A(t)x on I forms an n - dimensional vector space over the field of complex numbers. b) Prove Rodrigue's Formula P_n(t) = 1/(2ⁿ(n)!) dⁿ/dtⁿ (t² - 1)ⁿ. (9+6) 	4	4
22.	State and prove Picard's Existence theorem.	4	4
23.	Find the eigen value and eigen function of the ODE $\frac{d}{dx}\left[x\frac{dy}{dx}\right] + \frac{\alpha}{x}y = 0 \text{ if } y'(1) = 0, y'(e^{2\pi}) = 0.$	4	4

Q. No.	SECTION E $(2 \times 10 = 20)$	CO	KL
	Answer ANY TWO questions		
24.	Suppose x_p is any particular solution of a non-homogeneous	5	5
	linear equation $L(x)(t) = x''(t) + b_1(t)x'(t) +$		
	$b_2(t)x(t) = d(t)$, $t \in I$ and that x_h is the general solution		
	of the homogeneous equation $L(x) = 0$. Prove that		
	$x = x_p + x_h$ is its general solution and also for n^{th} order		
	non-homogeneous ODE.		
25.	Determine characteristic values and $exp(tA)$ for the system	5	5
	$x' = Ax$, where $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -2 & 3 \\ 0 & 1 & 0 \end{bmatrix}$.		
26.	Prove that the integral representation of Bessel's function is	5	5
	$\frac{1}{\pi}\int_0^{\pi}\cos(n\theta-t\sin\theta)d\theta.$		
27.	State Lipschitz continuous condition and check whether the	5	5
	IVP $x' = \frac{2}{t}x, x(0) = 0$ has unique solution.		

##