STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 86 (For candidates admitted from the academic year 2023 – 2024)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2024 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE	:	CORE	
PAPER	:	MATHEMATICAL STA	ATISTICS
SUBJECT CODE	:	23MT/PC/MS34	
TIME	:	3 HOURS	MAX. MARKS: 100

Q.	SECTION A $(5 \times 2 = 10)$	CO	KL
No.	Answer ALL questions		
1.	State any two properties of characteristic function.	1	1
2.	Find the characteristic function of zero-one distribution.	1	1
3.	Define stochastic convergence.	1	1
4.	Define the χ^2 statistic.	1	1
5.	Define consistent estimator.	1	1

Q.	SECTION B $(10 \times 1 = 10)$		KL
No.	Answer ALL questions		
6.	Let X be a random variable with characteristic function $\varphi_X(t)$. Then the	2	2
	characteristic function of the random variable $Y = X + b$ is		
	(i) $e^{it}\varphi_X(bt)$ (ii) $e^{bit}\varphi_X(t)$ (iii) $e^{ibt}\varphi_X(bt)$		
7.	If X and Y are two independent random variable with characteristic	2	2
	function $\varphi_X(t)$ and $\varphi_Y(t)$ respectively. Then the characteristic function		
	of <i>X</i> + <i>Y</i> is		
	(i) $\varphi_X(t) + \varphi_Y(t)$ (ii) $\varphi_X(t)\varphi_Y(t)$ (iii) $\varphi_X(t) - \varphi_Y(t)$		
8.	When <i>n</i> is an integer, $\Gamma(n) =$	2	2
	(i) $(n-1)!$ (ii) $n!$ (iii) $(n+1)!$		
9.	The density function of Cauchy distribution is	2	2
	(i) $\frac{\lambda}{\pi(\lambda^2 + (x-\mu)^2)}$ (ii) $\frac{\lambda}{\pi(\lambda^2 - (x-\mu)^2)}$ (iii) $\frac{\lambda}{\pi(\lambda^2 - (x+\mu)^2)}$		
10.	The Bernoulli law of large numbers is a special case of	2	2
	law of large numbers		
	(i) Chebyshev's (ii) Poisson's (iii) Khintchin's		

23MT/PC/MS34

-			
11.	The random variable X_n has an asymptotically normal distribution	2	2
	$N(np; \sqrt{npq})$ by replacing y_1 and y_2 with		
	(ii) $y_1 - \frac{1}{2\sqrt{npq}}$; $y_2 + \frac{1}{2\sqrt{npq}}$ (ii) $y_1 - \frac{1}{2\sqrt{npq}}$; $y_2 - \frac{1}{2\sqrt{npq}}$		
	(iii) $y_1 + \frac{1}{2\sqrt{npq}}; y_2 - \frac{1}{2\sqrt{npq}}$		
12.	A random sample is called simple if the random variables $X_1, \dots X_n$ are	2	2
	(i) independent (ii) dependent (iii) both		
13.	If the statistic \overline{X} and S are independent, the random variables X_k have the	2	2
	distribution.		
	(i) Binomial (ii) Normal (iii) Poisson		
14.	If T is an unbiased estimator for θ , then T^2 is a biased estimator for	2	2
	(i) θ^2 (ii) θ (iii) θ^3		
15.	Characteristics of a good estimator are	2	2
	(i) consistency (ii) biasedness (iii) both		

Q. No.	SECTION C $(2 \times 15 = 30)$ Answer ANY TWO questions	СО	KL
16.	If $F(x)$ and $\varphi(t)$ denote respectively the distribution function and the	3	3
	characteristic function of the random variable <i>X</i> , and $a + h$, $a - h$ ($h >$		
	0) are continuity points of the distribution function $F(x)$, then prove that		
	$F(a+h)-F(a-h)=\lim_{T\to\infty}\frac{1}{\pi}\int_{-T}^{T}\frac{\sin ht}{t}\ e^{-iat}\varphi(t)\ dt.$		
17.	a) State and prove De-Moivre Laplace theorem.	3	3
	b) Derive the raw moments m_k for the beta distribution. (10+5)		
18.	Find the distribution of the random variable (\overline{X}, S) and hence deduce	3	3
	that the random variable $Z = nS^2$ has a χ^2 distribution with $n - 1$		
	degrees of freedom.		
19.	State and Prove Cramer-Rao inequality.	3	3

Q.	SECTION D $(2 \times 15 = 30)$	CO	KL
No.	Answer ANY TWO questions		
20.	Prove that the characteristic function of two dependent random variables	4	4
	may be equal to the product of their characteristic functions by using a		
	suitable example.		

/2/

21.	a) Prove that the variance of a random variable <i>X</i> equals zero if and only	4	4
	if X has a one point distribution		
	b) Find the distribution of the sample mean \overline{X} where X has a normal		
	distribution. (7+8)		
22.	State Levy-Cramer theorem and prove that if the sequence $\{F_n(x)\}$ $(n =$	4	4
	1, 2,) of distribution functions is convergent to the distribution function		
	F(x), then the corresponding sequence of characteristic functions		
	$\{\varphi_n(t)\}$ converges at every point $t \ (-\infty < t < \infty)$ to the function $\varphi(t)$		
	which is the characteristic function of the limit distribution function $F(x)$		
	and the convergence to $\varphi(t)$ is uniform with respect to t in every finite		
	interval on the $t - axis$.		
23.	Define the Student's <i>t</i> statistic and derive its density function.	4	4

Q .	SECTION E $(2 \times 10 = 20)$	CO	KL
No.	Answer ANY TWO questions		
24.	Find the characteristic function and moments for the random variable X	5	5
	which has a Poisson distribution and takes on values $x_k = k$, where k is		
	any non-negative integer.		
25.	Define the Gamma distribution and find its characteristic function, raw	5	5
	moments m_k and central moment μ_2 .		
26.	Prove that the sequence of random variables is stochastically convergent	5	5
	to zero if and only if the sequence of distribution functions of these		
	random variables is convergent to the distribution function		
	$F(x) = \begin{cases} 0 & \text{for } x \le 0 \\ 1 & \text{for } x > 0 \end{cases} \text{ at every continuity point of } F(x).$		
27.	If T_1 and T_2 be two unbiased estimators of $\gamma(\theta)$ with variance σ_1^2, σ_2^2	5	5
	and correlation ρ , what is the best unbiased linear combination of T_1 and		
	T_2 and what is the variance of such a combination?		