STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 86 (For candidates admitted from the academic year 2023 – 2024 and thereafter)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2024 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE	:	MAJOR CORE	
PAPER	:	GRAPH THEORY	
SUBJECT CODE	:	23MT/PC/GT14	
TIME	:	3 HOURS	MAX. MARKS: 100

Q.	SECTION A $(5 \times 2 = 10)$	CO	KL
No.	Answer ALL questions		
1.	Find incidence matrix for $K_{2,3}$.	1	1
2.	In a complete bipartite graph, what kind of relationship exists between a	1	1
	maximum matching and a minimum covering of a graph G ?		
3.	Is every critical graph a block?	1	1
4.	Define independent dominating set with an example.	1	1
5.	Draw Q_4 .	1	1

Q. No.	SECTION B $(10 \times 1 = 10)$ Answer ALL questions	CO	KL
6.	Let G be a graph with $\nu - 1$ edges. Then G is	2	2
	(a) not connected (b) cycle (c) tree (d) all the above		
7.	A simple connected graph that has exactly two vertices which are not cut	2	2
	vertices is a		
	(a) path (b) cycle (c) complete graph (d) all the above		
8.	Every <i>k</i> -regular bipartite graph is	2	2
	(a) not factorable (b) 1-factorable		
	(c) 2-factorable (d) none of these		
9.	A graph is if $\alpha(G - e) > \alpha(G)$ for all $e \in E$	2	2
	(a) β -critical (b) $\alpha\beta$ -critical		
	(c) $\alpha + \beta$ -critical (d) α -critical		
10.	If G is a tree then $\pi_k(G) =$	2	2
	(a) $k(k-1)^{\nu-1}$ (b) $k(k+1)^{\nu-1}$		
	(c) $k(k-1)^{\nu-2}$ (d) $(k-1)(k)^{\nu-1}$		
11.	The edge-chromatic number of the Petersen graph $G(10, 15)$ is	2	2
	(a) 5 (b) 2 (c) 3 (d) 4		

12.	The minimal domination number of path on 5 vertices is			2	2	
	(a) 1	(b) 2	(c) 3	(d) 4		
13.	If G is a sim	ple planar graph w	with $v \ge 3$ then		2	2
	(a) $\epsilon \geq 3v$ -	- 5	(b) $\epsilon \geq 3v$ -	- 6		
	(c) $\epsilon \leq 3v$ -	- 6	(d) $\epsilon \leq 3v$ -	- 5		
14.	The diameter of a complete graph K_n is			2	2	
	(a) 0	(b) 1	(c) <i>n</i>	(d) <i>n</i> – 1		
15.	Which of the following graph is not vertex-transitive graph?			2	2	
	(a) Complet	e graph	(b) hyperc	cube network		
	(c) De Bruij	n network	(d) Circul	ant network		

Q.	SECTION C $(2 \times 15 = 30)$	CO	KL
No.	Answer ANY TWO questions		
16.	(i) Show that every nontrivial loopless connected graph has at least two	3	3
	vertices that are not cut vertices.		
	(ii) Prove that an edge e of G is a cut edge of G if and only if e is contained		
	in no cycle of G . (7 + 8)		
17.	(i) Prove that $\kappa \leq \kappa' \leq \delta$.	3	3
	(ii) State and prove Berge's theorem. (7 + 8)		
18.	(i) Prove that if G is bipartite with $p \ge \Delta$ then there exist p disjoint matchings	3	3
	M_1, M_2, \dots, M_P of G such that $E = M_1 \cup M_2 \cup \dots \cup M_p$ and for $1 \le i \le i$		
	$p, [\epsilon/p] \le M_i \le \{\epsilon/p\}$ with an example of timetable problem.		
	(ii) Let G be a connected graph that is not an odd cycle. Then prove that G		
	has a 2-edge coloring in which both colors are represented at each vertex		
	of degree at least two. (9 + 6)		
19.	(i) Show that K_5 is nonplanar.	3	3
	(ii) Explain the basic principles of Network design. $(7 + 8)$		

Q.	SECTION D $(2 \times 15 = 30)$		CO	KL
No.	Answer ANY TWO questions			
20.	Prove the following:		4	4
	(i) A graph is bipartite if and only if it contains no odd cycle.			
	(ii) Every nontrivial tree has at least two vertices of degree one. (8 -	+ 7)		

21.	(i) Using Hall's theorem prove that in a bipartite graph, the number of edges	4	4
	in a maximum matching is equal to the number of vertices in a minimum		
	covering.		
	(ii) If $\delta > 0$, then prove that $\alpha' + \beta' = \nu$. (7 + 8)		
22.	(i) Suppose G is k -critical graph with a 2-vertex cut $\{u, v\}$ then prove that	4	4
	$G = G_1 \cup G_2$ where G_i is a $\{u, v\}$ – component of type <i>i</i> .		
	(ii) State and prove Brook's theorem. (6 + 9)		
23.	(i) State and prove Euler's formula.	4	4
	(ii) Draw Circulant network $G(12, \{1, 2, 3\})$ and Kautz network $K(2, 3)$.		
	(8 + 7)		

Q.	SECTION E $(2 \times 10 = 20)$	CO	KL
No.	Answer ANY TWO questions		
24.	Explain shortest path problem using Dijkstra's algorithm.	5	5
25.	If G is simple graph, then prove that $\pi_k(G) = \pi_k(G - e) - \pi_k(G \cdot e)$ for any	5	5
	edge e of G . Hence obtain $\pi_k(K_{1,3})$.		
26.	Prove that every planar graph is 5-vertex-colorable.	5	5
27.	Explain any three properties of hypercube network.	5	5