STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2023 – 24 onwards)

M. Sc. DEGREE EXAMINATION, NOVEMBER 2024 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE	:	CORE	
PAPER	:	FUNCTIONAL ANALYSIS	
SUBJECT CODE	:	23MT/PC/FA34	
TIME	:	3 HOURS	MAX. MARKS :

Q. No.	SECTION A $(5 \times 2 = 10)$	CO	KL
	Answer ALL questions		
1.	Discuss the different norms constructed on K^n .	1	1
2.	Define a continuous seminorm on a Banach space X.	1	1
3.	Define dual of a normed space.	1	1
4.	What are orthonormal polynomials? Classify them.	1	1
5.	What are normal and unitary operators?	1	1

Q. No.	SECTION B $(10 \times 1 = 10)$	CO	KL
	Answer ALL questions		
б.	A normed space is	2	2
	(a) linear space (b) metric space		
	(c) both linear and metric space (d) None of the above		
7.	The set of all continuous functions with compact support on a	2	2
	metric space T is denoted as		
	(a) $C(T)$ (b) $C_{cs}(T)$ c) $C_{c}(T)$ (d) $C_{0}(T)$		
8.	If X is an infinite dimensional normed space, then it contains a	2	2
	hyperspace which is		
	(a) compact (b) complete (c) closed (d) not closed		
9.	The set $\{x_n\}$ where $x_n \in C[0,1]$ is at each point of $[0,1]$.	2	2
	(a)bounded (b) uniformly bounded		
	(c) not bounded (d) bounded but not uniformly bounded		
10.	If Z is a closed subspace of a normed space X , then the quotient	2	2
	map from X to X/Z is		
	(a) open (b) continuous (c) open and continuous (d) closed		
11.	If X and Y are normed spaces and $F \in BL(X, Y)$, then	2	2
	(a) $ F \neq F' \neq F'' $ (b) $ F = F' \neq F'' $		
	(c) $ F \neq F' = F'' $ (d) $ F = F' = F'' $		

100

12.	The closed unit ball of the dual of a separable normed space is	2	2
	(a) weakly compact (b) sequentially compact		
	(c) compact (d) weak* sequentially compact		
13.	If $A \in BL(H)$ then A is self-adjoint if	2	2
	(a) $A^* = -A$ (b) $A^* = A$ (c) $A^* = -A^{-1}$ (d) $A^* = A^{-1}$		
14.	A self-adjoint operator A on a Hilbert space H is said to be	2	2
	positive-definite if $\langle A(x), x \rangle$ is for every nonzero $x \in H$.		
	(a) equal to 0 (b) less than 0		
	(c) greater than 0 (d) greater than or equal to 0		
15.	If <i>X</i> is a Banach space over K and $A \in BL(X)$ then $\sigma(A)$ is	2	2
	subset of <i>K</i> .		
	(a) bounded (b) closed (c) compact (d) All of the above		

Q. No.	SECTION C $(2 \times 15 = 30)$	CO	KL
	Answer ANY TWO questions		
16.	a) State and prove Riesz Lemma.	3	3
	b) Prove that the interior and closure of a convex subset <i>E</i> of a		
	normed space X is convex. (9+6)		
17.	State and prove closed graph theorem.	3	3
18.	a) Prove: Let <i>X</i> be a normed space. Then	3	3
	i) Let X_0 be a dense subspace of X. For $x' \in X'$, let $F(x')$		
	denote the restriction of x' to X_0 . Then the map F is a linear		
	isometry from X'onto X_0' .		
	ii) If X' is separable, then so is X .		
	b) State and prove Polarization identity. (10+5)		
19.	Let <i>H</i> be a Hilbert space and $A \in BL(H)$. Then prove the	3	3
	following:		
	a) Let <i>A</i> be self-adjoint. Then $ A = \sup\{ \langle A(x), x \rangle ; x \in$		
	$H, x \le 1$. In particular, $A = 0$ if and only if $\langle A(x), x \rangle = 0$		
	for all $x \in H$.		
	b) A is unitary if and only if $ A(x) = x $ for all $x \in H$ and A		
	is surjective.		
	c) A is normal if and only if $ A(x) = A^*(x) $ for all $x \in H$.		
	In that case that $ A^2 = A^*A = A ^2$.		

	/3/ 23MT/P		
Q. No.	SECTION D $(2 \times 15 = 30)$	CO	KL
	Answer ANY TWO questions		
20.	a) Let <i>Y</i> be a closed subspace of a normed space X. For $x + Y$ in	4	4
	the quotient space X/Y , let $ x + Y = \inf \{ x + y : y \in Y\}$.		
	Prove that $\ \ \ \ $ is a norm on X/Y .		
	b) State and prove Jensen's inequality. (10+5)		
21.	If <i>X</i> is a normed space and $A \in BL(X)$, then prove that <i>A</i> is	4	4
	invertible if and only if A is bounded below and surjective. Also,		
	if <i>X</i> is a Banach space then prove that		
	i) A is invertible if and only if A is bijective		
	ii) A is invertible if and only if A is bounded below and the		
	range of A is dense in X .		
22.	a) If X is an inner product space and $f \in X'$ and if $\{u_1, u_2,\}$ is	4	4
	an orthonormal set in X, then prove that $\sum_n f(u_n) ^2 \le f ^2$.		
	b) State and prove Riesz representation theorem. (3+12)		
23.	a) Let <i>H</i> be a Hilbert space and $A \in BL(H)$. Then prove that	4	4
	there is a unique $B \in BL(H)$ such that for all $x, y \in H$,		
	$\langle A(x), y \rangle = \langle x, B(y) \rangle.$		
	b) Let <i>H</i> be a Hilbert bspace and let $A, B \in BL(H)$ and $k \in K$.		
	Then prove that		
	i) $(A + B)^* = A^* + B^*$; ii) $(AB)^* = B^*A^*$;		
	iii) $(kA)^* = \bar{k}A^*$. (9+6)		
Q. No.	SECTION E $(2 \times 10 = 20)$	CO	KL
	Answer ANY TWO questions		
24.	State and prove Hahn-Banach separation theorem.	5	5
25.	Prove:	5	5
	i) Let <i>X</i> be a normed space and <i>E</i> be a subset of <i>X</i> . Then <i>E</i> is		
	bounded in X if and only if $f(E)$ is bounded in K for every		
	$f \in X'$.		
	ii) Let <i>X</i> and <i>Y</i> be normed spaces and $F: X \to Y$ be linear. Then <i>F</i>		
	is continuous if and only if $g \circ F$ is continuous for every $g \in Y'$.		
26.	a) Establish Schur's lemma.	5	5
	b) If <i>X</i> is a separable normed space, then prove that every		
	bounded sequence in X' has a weak* convergent subsequence.		
	(5+5)		
27.	State and prove Projection theorem.	5	5
	· ·		

##