STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 86 (For candidates admitted from the academic year 2023 – 2024 and thereafter)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2024 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE	:	MAJOR CORE	
PAPER	:	ABSTRACT ALGEBRA	
SUBJECT CODE	:	23MT/PC/AA14	
TIME	:	3 HOURS	MAX. MARKS: 100

Q.	SECTION A $(5 \times 2 = 10)$	CO	KL
No.	Answer ALL questions		
1.	Find the number of non-isomorphic abelian groups of order 200.	1	1
2.	Prove that a Euclidean ring possesses a unit element.	1	1
3.	State Eisenstein criterion.	1	1
4.	Prove that the ring $R[x]$, of all polynomials in x over an integral domain	1	1
	R is an integral domain.		
5.	Express the polynomial $x_1^2 + x_2^2 + x_3^2$ in the elementary symmetric	1	1
	functions in x_1, x_2, x_3 .		

Q.	SECTION B $(10 \times 1 = 10)$	CO	KL
No.	Answer ALL questions		
6.	If a group G has an order of 18, what can you conclude about the	2	2
	existence of elements of order 3 in G?		
	a) There are no elements of order 3		
	b) There is exactly one element of order 3		
	c) There are at least two elements of order 3		
	d) There are infinitely many elements of order 3		
7.	Let <i>G</i> be a group of order 4 and H be a group of order 9. What can be	2	2
	said about the direct product $G \times H$?		
	a) The order of $G \times H$ is 13.		
	b) The order of $G \times H$ is 36.		
	c) The order of $G \times H$ is 36, and it is a cyclic group.		
	d) The order of $G \times H$ is 36, and it is an abelian group		
8.	Which type of groups are guaranteed to have a unique decomposition	2	2
	into cyclic subgroups?		
	a) Finite non-abelian groups		
	b) Infinite non-abelian groups		
	c) Finite abelian groups		
	d) Infinite abelian groups		
9.	Which rings are characterized by the existence of a division algorithm?	2	2
	a) Euclidean rings		
	b) Unique factorization rings		
	c) Polynomial rings		
	d) Field rings		
10.	What do polynomial rings over commutative rings generalize?	2	2
	a) Division rings		
	b) Integral domains		
	c) Fields		
	d) Euclidean rings		

11.	Which theorem states that every positive integer can be written as a sum	2	2
	of four squares?		
	a) Euclidean theorem		
	b) Unique Factorization theorem		
	c) Polynomial theorem		
	d) Fermat's theorem		
12.	In the context of field extensions, if F is a field and E is an extension	2	2
	field of <i>F</i> , which of the following statements is true?		
	a) <i>E</i> is a proper subset of <i>F</i>		
	b) E contains elements not in F		
	c) E is equal to F		
	d) E has no elements in common with F		
13.	What is the splitting field of a polynomial?	2	2
	a) A field in which the polynomial has no roots		
	b) The smallest field extension of F in which the polynomial can be		
	factored completely		
	c) A field in which the polynomial can be divided by another polynomial		
	d) A field in which the polynomial can be written as a linear combination		
	of other polynomials		
14.	In Galois theory, what do the elements of the Galois group correspond	2	2
	to?		
	a) Roots of polynomials		
	b) Automorphisms of field extensions		
	c) Subfields of extension fields		
	d) Euclidean rings		
15.	What is the key to determining if a polynomial is solvable by radicals?	2	2
	a) The degree of the polynomial		
	b) The number of real roots		
	c) The coefficients of the polynomial		
	d) The Galois group of the polynomial		

Q.	SECTION C $(2 \times 15 = 30)$	CO	KL
No.	Answer ANY TWO questions		
16.	Let G be a group and suppose that G is the internal direct product of	3	3
	N_1, N_2, \dots, N_n and $T = N_1 \times N_2 \times \dots \times N_n$. Prove that G and T are		
	isomorphic. Provide a clear and rigorous explanation with the necessary		
	results		
17.	Investigate that $J[i]$ is a Euclidean ring. Find the greatest common	3	3
	divisor of $11 + 7i$ and $18 - i$ in $J[i]$.		
18.	(a) Let \mathbb{R} be the field of real numbers and \mathbb{Q} the field of rational	3	3
	numbers. Prove that $\sqrt{2}$ and $\sqrt{3}$ are both algebraic over \mathbb{Q} . Also exhibit		
	the polynomial of degree 4 over \mathbb{Q} satisfied by $\sqrt{2} + \sqrt{3}$.		
	(b) If 'a' is any algebraic number, then prove that there is a positive		
	integer 'n' such that na is an algebraic integer. (7+8)		
19.	Prove that <i>K</i> is a normal extension of <i>F</i> if and only if <i>K</i> is the splitting	3	3
	field of some polynomial over <i>F</i> .		

1	3	/
'	~	

Q.	SECTION D $(2 \times 15 = 30)$	CO	KL
No.	Answer ANY TWO questions		
20.	Prove that if G is a group of finite order p, a prime number and	4	4
	$p^m \mid o(G), p^{m+1} \nmid o(G)$, then G has a p –Sylow subgroup.		
21.	If <i>R</i> is a unique factorization domain, prove that the polynomial ring	4	4
	R[x] is also a unique factorization domain, by proving all the necessary		
	results that are used in the proof.		
22.	Let τ be an isomorphism of a field F onto a field F' defined by $\alpha \tau =$	4	4
	$\alpha', \forall \alpha \in F$. Prove that there is an isomorphism τ^* of $F[x]$ onto $F'[t]$		
	with the property that $\alpha \tau^* = \alpha', \forall \alpha \in F$.		
23.	Let F be a field and let $F(x_1, x_2,, x_n)$ be the field of rational functions	4	4
	in $x_1, x_2,, x_n$ over F. Suppose S is a field of symmetric rational		
	functions, then prove that		
	(i) $[F(x_1, x_2,, x_n): S] = n!$		
	(ii) $G(F(x_1, x_2,, x_n), S) = S_n$, the symmetric group of degree n		
	(iii) If $a_1, a_2,, a_n$ are the elementary symmetric functions in		
	x_1, x_2, \dots, x_n , then $S = F(a_1, a_2, \dots, a_n)$		
	(iv) $F(x_1, x_2,, x_n)$ is the splitting field over $F(a_1, a_2,, a_n) = S$ of		
	the polynomial		
	$t^n - a_1 t^{n-1} + a_2 t^{n-2} - \dots + (-1)^n a_n.$		

Q.	SECTION E $(2 \times 10 = 20)$	CO	KL
No.	Answer ANY TWO questions		
24.	Prove that two abelian groups of order p^n are isomorphic if and only if	5	5
	they have the same invariants.		
25.	Prove that every non-zero element in a Euclidean ring R can be uniquely	5	5
	written (up to associates) as a product of prime elements or is a unit in R		
	(prove the necessary results).		
26.	Prove that if F is of characteristic 0 and if a, b are algebraic over F , then	5	5
	there exists an element $c \in F(a, b)$ such that $F(a, b) = F(c)$.		
27.	Prove that the polynomial $f(x) \in F[x]$ has a multiple root if and only	5	5
	if $f(x)$ and $f'(x)$ have a non-trivial common factor.		

##