STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2023 – 2024 & thereafter)

M. Sc. DEGREE EXAMINATION, NOVEMBER 2024 INFORMATION TECHNOLOGY FIRST SEMESTER

COURSE PAPER	E : MAJOR CORE : DISCRETE MATHEMATICS FOR COMPUTE	р ссп	INCE
	T CODE: 23CS/PC/DM14	кзсп	
TIME	: 3 HOURS MAX. MARKS: 10		
Q. No.	SECTION A	CO	KL
	Answer all the questions: (10 X 2 = 20)		
1	Define a lattice.	CO1	K1
2	What is a tautology?	CO1	K1
3	What is a reflexive relation?	CO1	K1
4	What is an asymptotic notation in complexity analysis?	CO1	K1
5	Define a planar graph.	CO1	K1
6	State the principle of inclusion and exclusion.	C01	K1 K2
7	Differentiate between restricted and nested quantification.	C01	K2 K2
8	What are the criteria for an algorithm?		K2 K2
	6	C01	
9	What is graph isomorphism?	CO1	K2
10	What is the Four color theorem?	CO1	K2
Q. No.	SECTION B	CO	KL
	Answer all the questions: $(4 \times 5 = 20)$		
6	 (a) Apply the principle of mathematical induction to prove the sum of the first n natural numbers is n(n+1)/2. (OR) 	CO2	K3
	(b) Construct the conjunctive normal form of the following statement: $(p\land q)\lor(\neg p\land \neg q)$.		
7	a) For the family tree given below find the following (i) IsParentOf() (ii) IsParentOf() ⁻¹ (iii) IsOfSamegeneration()	CO2	K3
	Mary = John		
	Peter = Elaine Maude = Harold		
	George Elizabeth		
	(OR) b) Using suitable quantification, disjunction and conjunction express the following statements: (i). "All cats are mammals and all dogs are mammals." (ii). "There is a person who speaks either English or French."		
8	 (a) In a library with 500 books, 20 books are about mathematics, 25 are about science, and 30 are about history. Prove that there must be at least one book that covers both mathematics and science. (OR) (b) For each of the following relations, state whether they are reflexive, symmetric or transitive. 	CO2	К3

	1	1	
	i) X is the set of people in the world, and xRy if and only		
	if x and y have a parent in common.		
	ii) X is the set of real numbers, xRy is true when $x^2 = y^2$		
	iii) $X = \{a, b, c, d\}$ and $R = \{(a, a), (a, b), (a, c), (d, b), (b, d)\}$		
0	$b),(c, d)\}.$	CO2	17.4
9	(a) You need to draw 5 cards to guarantee that you have at least two cards of the same suit. There are 4 suits (hearts	CO3	K4
	least two cards of the same suit. There are 4 suits (hearts, diamonds, clubs, and spades), and drawing 5 cards		
	ensures that at least two of them must belong to the same		
	suit.		
	(OR)		
	(b) Analyze the complexity of the quicksort algorithm.		
Q. No.	SECTION C	CO	KL
Q • 110.	Answer all the questions: $(6 \times 10 = 60)$	CU	NL
10	a). i.How many numbers between 1 and 1000 are divisible by	CO2	K3
10	3,7 or 9?	002	11.5
	ii. Construct combinatorial circuit for: $(P \rightarrow Q) \land (P \leftrightarrow \neg R)$		
	(OR)		
	b) Identify CNF and DNF of : a Λ (b \leftrightarrow c)		
11	a) Give the algorithm for computing square roots and analyze	CO3	K4
	with an example.		
	(OR)		
	b) Examine using truth table to determine whether any of		
	these formulas is a tautology, fallacy, satisfiability or valid:		
	i. $(P \land (P \to Q) \land (Q \to R)) \to R$		
	ii. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \leftrightarrow r)$		
1.0	iii. $(p \to q) \leftrightarrow (\neg p \lor q)$	~~~	** 4
12	a) Compare and contrast Big O, Omega (Ω) , and Theta (Θ)	CO3	K4
	notations. Provide examples of each notation.		
	(OR) b) Analyse the general rules for estimation of complexity of		
	algorithm.		
13	a) For any natural number n and for any real number x, prove	CO4	K5
15	that	001	11.5
	$(1-x)(1+x+x^2++x^n) = 1-x^{n+1}$		
	(OR)		
	b) Defend if the following statements are logically correct		
	i. Socrates says:		
	"If I'm guilty, I must be punished;		
	I'm guilty. Thus I must be punished."		
	ii. "If Paola is happy and paints a picture then Renzo isn't		
	happy"		
14	a) Prove: A real number is rational if and only if it has a	CO4	K5
	repeating decimal expansion.		
	(OR) b) Discuss about problems with divisors and schedules		
15	b) Discuss about problems with divisors and schedules.	CO5	K6
15	a) Design a planar graph and explain its applications in real- world problems.		K0
	(OR)		
	b) Create an algorithm that computes powers using recursion,		
	and prove its correctness using mathematical induction.		
	Prove the concernations using manifemation material.	1	I