STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2023 – 2024 and thereafter)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2024 INFORMATION TECHNOLOGY THIRD SEMESTER

:	CORE	
:	ARTIFICIAL INTELLIGENCE	
:	23CS/PC/AI35	
:	1 1/2 HOURS	MAX. MARKS: 100
	:	 : CORE : ARTIFICIAL INTELLIGENCE : 23CS/PC/AI35 : 1 1/2 HOURS

Q. No.	SECTION A (10 x 2 = 20)	CO	KL
1.	What is Artificial Intelligence?	CO1	K1
2.	Explain Cognitive psychology.	CO1	K1
3.	What do the terms node, edge, and root represent in the	CO1	K1
	context of a search tree?		
4.	7 2 4 1 2 5 6 3 4 5 8 3 1 6 7 8 Goal StateWhat is Manhattan distance? If $h2 = the sum of the distancesof the tiles from their goal positions, Calculate h2 for theabove diagram.$	CO1	K1
5.	Define Semantics.	CO1	K1
<i>6</i> .	Write the objects of event calculus with an example.	CO2	K1 K2
7.	State Utility theory.	CO2	K2
8.	What is probability density function?	CO2	K2
9.	Write the formula to calculate the Expected Utility of a	CO2	K2
	Lottery.		
10.	What are cooperative games?	CO2	K2
Q. No.	SECTION B (4 x 5 =20)	CO	KL
11.	a) Identify and explain the contributions from neuroscience in advancing AI.	CO3	K3
	(OR)		
	b) Identify the agents and the environment in the context of		
10	Intelligent Agents, and explain their roles.	<u> </u>	
12.	a) Apply the Breadth-First Search (BFS) algorithm, and explain its time and space complexity, highlighting how it finds the shortest path when all actions have the same cost. (OR)	CO3	K3
	b) Apply the depth first search algorithm and its variant		
10	backtracking search in a scenario.	act	
13.	a) Construct the two standard quantifiers of first order logic	CO3	K3
	with example.		
	(OR)		
	b) Utilize the domain of family relationships, or kinship domain, to describe first-order logic with functions and predicates.		
	producatos.		

.....2

14.	a) Examine the different basic probability notations.	CO4	K4		
	(OR)				
	b) Examine the Value Iteration algorithm of Markov				
	Decision Process (MDP).				
Q. No.	SECTION C (6 x 10 =60)	CO	KL		
15.	a) Identify and explain briefly the Risks and Benefits of AI.	CO3	K3		
	(OR)				
	b) Utilize reports to describe the state of the art in Artificial				
	Intelligence.				
16.	a) List the four basic kinds of agent programs that embody	CO4	K4		
	the principles underlying almost all intelligent systems and				
	brief on any two kinds with diagrams.				
	(OR)				
	b) Examine the AND-OR-SEARCH problem for the Search				
17.	with Nondeterministic Actions.	CO4	K4		
17.	a) Discuss on the applications of image processing with AI. (OR)	C04	κ4		
	b) Write and explain the GENETIC-ALGORITHM in the				
	evolutionary algorithms.				
18.	a) Analyze the steps involved in the knowledge engineering	CO5	K5		
10.	process of first order logic.	000	110		
	(OR)				
	b) Assess a real-world case study of Natural Language				
	Processing (NLP) in AI.				
19.	a) Explain about smoothing and its forward–backward	CO5	K5		
	algorithm.				
	(OR)				
	b) Explain the syntax and semantics of Relational				
	Probability Models on Probabilistic Programming with				
	example.				
20.	a) Discuss how AI-based traffic management handle	CO5	K6		
	complex decision-making in dynamic and unpredictable				
	traffic environments.				
	(OR)				
	b) Provide an example of a real-world application of				
	reinforcement learning, such as in robotics or game-playing,				
	and explain how RL contributes to solving the problem.				
