STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted during the academic year 2023-2024 & thereafter)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2024 BRANCH IV- CHEMISTRY FIRST SEMESTER

COURSE : CORE

PAPER : STRUCTURAL INORGANIC CHEMISTRY

SUBJECT CODE : 23CH/PC/SI14

TIME : 3 HOURS MAX.MARKS :100

Q. No.	SECTION A	CO	KL		
	Answer all Questions (10 x 1=10)				
1.	The HOMO of CO and NO are respectively	CO1	K1		
	a) σ and π b) σ^* and π^* c) σ and π^* d) π and π^*				
2.	Half sandwich compounds are organometallic compounds which	CO1	K1		
	a) Have only one Cp ring				
	b) Have parallel Cp rings				
	c) Have even number of Cp rings				
	d) Contains four membered rings				
3.	The miller indices of the diagonal plane of a cube are				
	a) 110 b) 101 c) 100 d) 111				
4.	Lattice energy of ionic solids does not reveal information about their	CO1	K1		
	a) volatility b) magnetic property c) solubility d) hardness				
5.	The most commonly used spectroscopic method for analysis of metal	CO1	K1		
	carbonyls is				
	a)Mass b)IR c)UV-Vis d)ESR	001	77.4		
6.	The function of Cu (II) salt in Wacker's process is	CO1	K1		
7	a) catalyst b) co-catalyst c) reducing agent d) 'a' and 'b'	001	T7.1		
7.	The hybridization and coordination number of rhodium metal in	CO1	K1		
	Wilkinson's catalyst is				
0	a) dsp^2 , 4 b) sp^3 , 4 c) sp^3d^2 , 6 d) d^2sp^3 , 6	CO1	K1		
8	The catalyst used in Wacker process is a combination of				
	a) Zinc chloride and Iron Chloride b) Palladium chloride and				
	copper chloride				
	c) Zinc chloride and Copper chloride d) palladium chloride and zinc chloride				
9.		CO1	K1		
9.	Ziegler Natta catalyst is an important reaction for				
	a) Polymerisationb) Nanosynthetic reactionc) Oxidationd) Organosynthetic reaction				
10.	The Madelung constants, interionic distance and the Born exponents	CO1	K1		
10.	for both LiF and MgO are the same. The lattice energies of the two		17.1		
	compounds are in the ratio				
	a) 1:2 b) 1:4 c) 2:3 d)1:3				
Q No	SECTION B	CO	KL		
	Answer all Questions (10 x 1=10)				
11.	The formation of pi complex in Zeise's salt is due to the presence of	CO2	K2		
10		CO2	K2		
12.	When a superconductor's Meisner effect is activated, it a				
10	nearby magnet.				
13.	Indicate the compound with the highest lattice energy among LiF,				
1.4	MgO and KBr.				
14.	Interpret the nonstoichiometric nature of interstitial compounds.		K2		

15	Estimate what happens on the treatment of Fe(CO) ₅ with NaOH?	CO2	K2
16.	At a pH of about 10, what is the ion present in a molybdate solution?	CO2	K2
17.	Point out an application of dielectric materials.	CO2	K2
18.	Associate any one property of X-Rays with its application in XRD.	CO2	K2
19.	The radius ratio of an ionic compound is 0.765. Its coordination number is	CO2	K2
20.	Provide one example of covalent and ionic carbide.	CO2	K2

Q No	SECTION C		KL
	Answer any four questions (4 x 6=24)		
21.	Apply band theory to explain the conducting behaviour of metals, n-type and p-type semiconductors?	CO3	К3
22.	Identify the compound with highest C-O stretching frequency among $[V(CO)_6]$, $Cr(CO)_6$, $[Mn(CO)_6]^+$ and CO. and give reasons	CO3	К3
23.	Demonstrate the role of catalyst in Monsanto acetic acid process.	CO3	K3
24.	Illustrate EAN and 18 electron rules with examples.	CO3	К3
25.	Distinguish between tetrahedral and octahedral heteropolyacids with a specific example each	CO3	К3

	SECTION D		KL
	Answer any four questions $(4 \times 8=32)$		
26.	Examine the formation of supra molecular assemblies. Explain reason for their stability and give their applications	CO4	K4
27.	Analyse Paulings rules for ionic crystals using examples.	CO4	K4
28.	Investigate the chemistry of phosphazenes and their applications.	CO	K4
29.	Probe into the study of crystal structure using Debye Scherrer method and give the selection rules.	CO4	K4
30.	Outline the BCS theory to understand the phenomenon of superconductivity.	CO4	K4

	SECTION E				
	Answer any two questions	(2x12=24)			
31.	(a) Apply Wade's rule to interpret the structure of	(4x2=8)	CO5	K5	
	(i) B_4H_{10} (ii) $B_{10}C_2H_{12}$				
	(b) Evaluate Curie Weiss Law.	(4)			
	(OR)				
	(a) Judge the relationship between piezo, pyro and ferro electric				
	substances.	(6)			
	(b) Analyse Metal hydride complexes and give their applications. (6)				
32.	(a) Distinguish Electron and Neutron Diffractions.	(6)	CO5	K5	
	(b) Recommend a mechanism of Oxo process	(6)			
	(OR)				
	(a) Discuss the instrumentation of a powder diffractometer. How it is used				
	to characterize the samples?	(8)			
	(b) Support the classification of boranes with an example.	(4)			