STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted during the academic year 2023-24 & thereafter)

SUBJECT CODE: 23CH/PC/RM34

M.Sc. DEGREE EXAMINATION, NOVEMBER 2024 BRANCH IV - CHEMISTRY THIRD SEMESTER

COURSE: MAJOR CORE

PAPER : RESEARCH METHODOLOGY (PRACTICAL)

TIME : 90 Mins MAX. MARKS : 50

Q. No	SECTIO	ON A						CO	KL
1	Answer	all Questions			(2x 2=4)				
(i)	The composition of an alloy is 18% Chromium, 8 % Nickel, 66% ,Iron, 5%						CO1	K1	
	Mangane	ese, and 3% Sil	icon. Draw	a Pie cha	art for the follo	wing	g data.		
(ii)	Give the IUPAC name of the following compounds (a) (b)						CO1	K1	
				H ₂ N					
2	Answer all Questions (4x 2=8)								
		he following data gives the percentage efficiency of an organic synthesis				ic exnthesis	CO2	K2	
	by different methods. Draw a bar chart for the data and infer the best method for this preparation.								
		Method		Percentage yield					
		Chemical		80					
		Electrochemical		67					
		Microwave-assisted		95					
		photochemical		45		4			
		Solvent less green		25					
(ii)	synthesis Draw an X-Y graph for the following data and compare the slopes of the						CO2	K2	
. ,	two lines obtained.								
		Time	Volume of		Volume of				
			NaOH fo		NaOH for	ml			
		5	reaction 10.2	1, 1111	reaction 2, 1 8.1	1111			
		10	14.5		9.2				
		15	17.7		10.6				
		20	19.6		11.5				
		25 30	22.3		12.4				
					13.1				

(iii)	Compare the C-O-C a	CO2	K2		
		ſ			
			C=N		
		_	C=N		
(iv)	Outline the mass spec	tral data for the	following molecule using ChemDraw	CO2	K2
(10)	Outline the mass spec	trai data foi tile	Tonowing morecule using Chembraw	CO2	KZ
			COOH		
		•	С ООН 		
		N	//		
		//	//		
3	Answer all Questions	s	(4x 2=8)		
(i)	Calculate the mean, m	nedian and mod	e for the following data using excel.	CO3	K3
	Calculate the mean, median and mode for the following data using excel. Sample No. Concentration				
			of lead in ppb		
		1	5		
		2	12		
		3	7		
	-	5	8		
	-	6	7		
		7	9		
		8	14		
		9	10		
		10	7		
(ii)			olecular weight of the polymer vs the	CO3	K3
	number of moles of cl Molecular	No. of	the polymer.		
	Weight of	moles o	f		
	polymer	chains			
	10000	20			
	20000	58			
	35000	90			
	15000	35			
	45000	100			
	40000 50000	94	_		
	25000	78	_		
	30000	82			
	55000	85			
	70000	40			
	60000	80			
	65000	55	33		

(iii)	Make use of Chemdraw and produce the ¹³ C and ¹ H NMR for the following molecule	CO3	К3
	NO ₂		ı
	ОН		
(iv)	Draw the three-dimensional ball and stick model of 2,5-dimethyl-1,3-dinitrobenzene and calculate its dipole moment using ChemDraw.	CO3	К3
	SECTION B Answer all the questions (6 x 5=30)		
4(a)	Draw the following chemical reaction using ChemDraw	CO4	K4
	Ph ₃ P _m PPh ₃		
	CI PPh ₃		ı
	- PPh ₃ solvent (S)		
	H Ph ₃ P ₁ , S H ₂ reductive PPh ₃		
	elimination oxidative addition		
	Ph ₃ P ₁₁ H Ph ₃ P ₁₁ H		
	CI PPh ₃ CI PPh ₃		ı
	Ph D L H		
	migratory insertion Ph ₃ P _m , Rh PPh ₃		
	(or)		
4 (b)	Draw the following chemical reaction using ChemDraw	CO4	K4

	Acetylsalicylic Acid (Aspirin) H O H O H O H O Salicylate Acetate Acetate Mixed Anhydride		
5 (a)	The following table gives the equilibrium constant at different temperatures for the reaction	CO5	K5
5(b)	The rate constants of a chemical reaction are $1x10^{-3}$ s ⁻¹ and $2x10^{-3}$ s ⁻¹ at 30^{0} C and 40^{0} C respectively. Calculate the energy of activation of the reaction using the formula given below:	CO5	K5
6(a)	The wave function for the particle in a one-dimensional box is given as: $ \psi n = (\sqrt{(2/a)}) \sin[(nx \prod x)/a]; $ where, $a = 3$; $nx = 1,2,3$; $\prod x = 0,5,10,15,20,25,30 \& 35$; Calculate, $\psi 1$, $\psi 2$, $\psi 3$ Draw sine wave by plotting $\prod x \ vs \ \psi 1$, $\psi 2$, $\psi 3$ (or)	CO6	K6
6(b)	The wave function for the particle in a one-dimensional box is given as: $ \psi n = (\sqrt{(2/a)})\cos[(nx \prod x)/a]; $ where, $a = 5$; $nx = 1,2,3,4$; $\prod x = 0,2,4,6,8,10,12 \& 14$; Calculate, $\psi 1$, $\psi 2$, $\psi 3$, $\psi 4$ Draw cosine wave by plotting $\prod x \ vs \ \psi 1$, $\psi 2$, $\psi 3$, $\psi 4$	CO6	K6