STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted during the academic year 2023-24 & thereafter)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2024 BRANCH IV- CHEMISTRY FIRST SEMESTER

COURSE	: CORE
PAPER	: ADVANCED PHYSICALCHEMISTRY
SUBJECT CODE	: 23CH/PC/PC14
TIME	: 3 HOURS

MAX.MARKS :100

Q.N	SECTION-A	С	K
0.	Answer all questions(10x1=10 marks)	0	L
1.	Particles with half integral spin are known as	1	1
	a) Bosons b) Fermions c) Nuons d) Mesons	1	1
2.	For hydrogen molecule the number of translational, rotational and		
	vibrational degrees of freedom at high temperature are:		
	a) 3,3,3 b) 3,2,1 c) 3,2,2 d) 3,1,1		
3.	Cell potential is an property.	1	1
	a) extensive b) colligative c) intensive d) nuclear	-	-
4.	The Arrhenius rate equation is a) $k=Ae^{-Ea/RT}$ b) $k=Ae^{-Ea/RT}$ c) $k=2.303 \text{ A/RT}$ d) $k=E_a/RT$	1	1
5.	In a consecutive reaction,		
	$A \rightarrow I \rightarrow P$		
	$A \rightarrow I v = k_a [A]$		
	$I \rightarrow A v = k \stackrel{[a]}{}_{a} [A]$		
	$I \rightarrow P v = k_b[A]$	1	1
	When $k_b > > k_a$,	1	1
	a) The formation of the product depends only on the k_a		
	b) The formation of the product depends only on the k_b		
	c) The formation of the product depends only on [I]		
	d) The formation of the product depends on both $k_a \& k_b$		
6.	According to Rice-Herzfeld mechanism of decomposition of		
	acetaldehyde, the rate of decomposition is directly proportion to	1	1
	a) $[CH_3CHO]^{1/2}$ b) $[CH_3CHO]^{3/2}$ c) $[CH_3CHO]$ d) $[CH_3CHO]^{2/3}$		
7.	The equation for the rate constant of a diffusion-controlled reaction		
	between two different molecules is	1	1
	a) $K_D = 4RT/3\eta$ b) $K_D = 8RT/3\eta$ c) $K_D = 3RT/8\eta$ d) $4RT/9\eta$		
8.	Activity of a solid is always taken to be	1	1
	a) 1 b) 0 c) same as amount d) moles		
9.	In Freundlich adsorption isotherm, the slope of the straight-line graph		
	between $log(x/m)$ and $logP$ for adsorption of a gas on solid is	1	1
	a) $1/n$ b) $logk$ c) n d) k		
10.	In electrochemistry, the transfer coefficient (α) is a quantity that has a		
	value		
	a) one b) more than 1 c) between 0 and 1 d) less than zero		

	SECTION- B			
	Answer all questions (10 x 1 = 10 Marks)	со	KL	
	Fill in the blanks-			
11				
11.	The units of partition function is	2	2	
12.	The process of catalytically induced fragmentation of the long chain hydrocarbons(drawn from earth as petroleum) is called	2	2	
13.	The symmetry number for HCl molecule is	2	2	
14.	According to Dulong and Pettit's law, for a monatomic crystal, C _v (calK ⁻¹) is	2	2	
15.	Variation of the rate of the reaction between ions in the presence of an added electrolyte acting as catalyst is called as	2	2	
	Answer in a line or two:			
16.	The following is graph of $t_{1/2}$ verses concentration of reactant 'a'. What $t_{1/2}$ is the order of the reaction?	2	2	
17.	Identify type and give an example of the following isotherm. g_{g}	2	2	
18.	Consider a system of distinguishable particles having only two non-degenerate energy levels separated by an energy which is equal to kT at 25K. Calculate the ratio of populations in states at 25K.	2	2	
19.	Evaluate using Stirling approximation Ln N!. Where N= 6.023×10^{23}	2	2	
20.	Indicate whether the reaction is spontaneous or not. Given: $E_{cell} = 1.314V.$ (n=2)	2	2	

	SECTION- C		KL
	Answer any four questions(4 x 6 = 24 Marks)	CO	KL
21.	Derive the expression for Maxwell- Boltzmann Statistics.	3	3
22.	 a) Explain in detail the potential energy diagram of surfaces. (4) b) A average human DNA molecule has 5x10⁸ bio-nucleotides (rungs on DNA ladder) of four different kinds. If each rung were a random choice of one of these four possibilities, what would be the residual entropy associated with this typical DNA molecule? (2) a) Explain the dynamics of molecular collisions. (3) 	3	3
23.	b) Explain the sedimentation potential. (3)	3	3
24.	a) Explain the role of catalytic oxidation in pollution control with an example. $k_a k_b$ (3) b) Show that the pre-equilibrium mechanism - $A + B \leftrightarrow C \rightarrow P$ (3) results in a second order reaction, k_a' Arrive at a rate law when $k_b \ll k_a'$		
25.	Obtain an expression for internal energy and partition function of an ideal gas. Show that the internal energy of a monatomic gas is 3RT/2.		

	SECTION- D		KL
	Answer any four questions(4x 8= 32 marks)	CO	NL
26.	a) Derive an expression for molecular translational partition function of		
	an ideal gas. (5)	4	4
	b) Calculate the translational partition function for D ₂ molecule confined		-
	to 100 cm^3 vessel at 25°C. Given: m= 4.028 u , u = 1.67x10 ⁻²⁷ Kg (3)		
	a) Describe the Rice-Herzfeld mechanism in decomposition of		
27.	acetaldehyde. (4)	4	4
	b) Compare Eley Rideal mechanism and Langmuir Hinshelwood		-
	mechanism for surface catalysed reaction. (4)		
28.	Discuss the application Bose Einstein equation in derivation of Planck's	4	4
	equation for distribution of energy in black body radiation.		
29.	What do you mean by diffusion-controlled reactions? Prove that the	4	4
	diffusion rate of the reaction is inversely proportional to the viscosity.		
30.	Explain the Helmholtz-Perrin and Stern models for structure of	4	4
	electrified surfaces.		

	SECTION E		
	Answer the following (2 x 12 = 24 Marks)	CO	KL
31.	 a) Starting from the expression of entropy and partition function derive Sackur Tetrode equation. Calculate the standard molar entropy of Argon at 25°C. Given molar mass of Ar= 39.95 [4+3] b) Evaluate the vibrational partition function at 1500K. The wave numbers of three normal modes of CO₂ are 1388 cm⁻¹, 667.4 cm⁻¹, and 2349 cm⁻¹, the second being doubly degenerate. (5) OR a) What are phenomenological equations? Discuss the Onsager reciprocity relation and verify the same. (6) b) Discuss the Lindemann-Hinshelwood mechanism for unimolecular reactions. (6) 	5	5
32.	 a) Derive Tafel equation. In the electrolysis of 2N sulphuric acid using Ni electrodes the hydrogen over voltage was found to be 0.35V for a given current density. What will be the hydrogen over voltage for the same cathode under same conditions if the current density is increased 8 times its preset value? Given b = 0.12V at 298K (4+3) b) Discuss in brief the influence of solvent on reaction rate. (5) OR a) Discuss in detail the Debye specific heat equation of solids. (8) b) A monolayer of N₂ molecules is adsorbed on the surface of 1.00g of an Fe/Al₂O₃ catalyst at 77K, the boiling point of liquid nitrogen. Upon warming, the nitrogen occupies 2.86cm³ at 0°C and 760Torr. What is the surface area of the catalyst? The effective area of a N₂ molecule is 0.167nm². (4) 	5	5
