STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted during the academic year 2023-24 & thereafter)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2024 BRANCH IV- CHEMISTRY FIRST SEMESTER

MAX.MARKS: 100

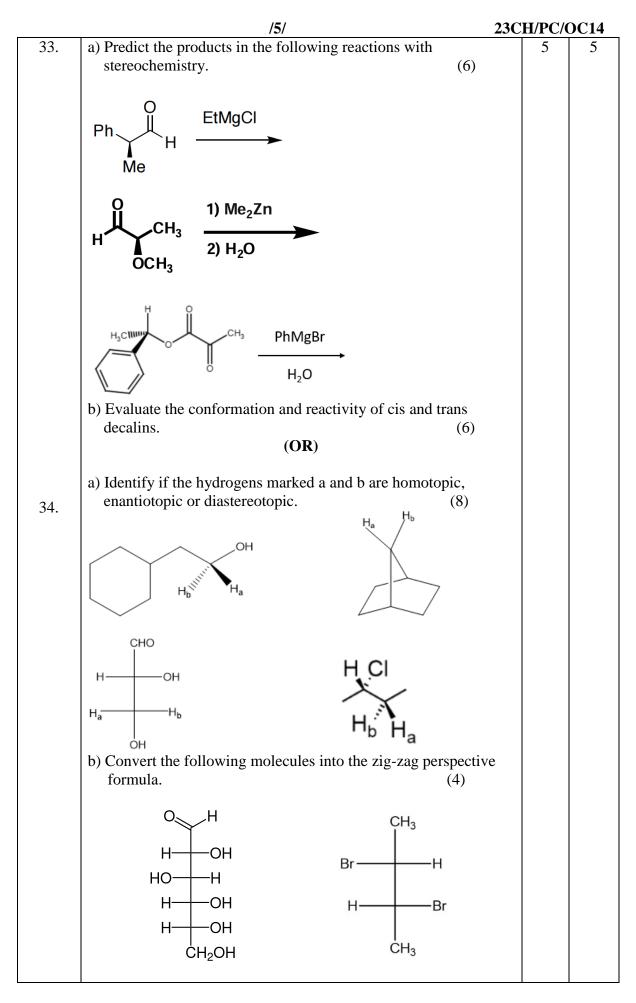
COURSE	: CORE
PAPER	: ORGANIC CHEMISTRY - I
SUBJECT CODE	: 23CH/PC/OC14
TIME	: 3 HOURS

SECTION A (10 x 1 = 10 marks) Q. No. CO KL The IUPAC name of the following compound is 1. 1 1 a) bicyclo [0 1 1] pentane b) bicyclo [2 1 0] pentane c) bicyclo [2 1 0] hexane d) bicyclo [1 1 0] hexane 2. The number of nodal planes in the π_4^* orbital of benzene is 1 1 b) 1 a) 0 c) 2 d) 3 1,2-The name of the following molecule is _____ 1 3. 1 dibromocyclopentane. c) dextro (+) d) laevo (-) a) cis b) trans 4. The boat conformation of cyclohexane is less stable than the chair 1 1 because of a) angle strain b) 1,3-diaxial interaction c) torsional strain d) all of the above 5. The following molecules are 1 1 CH₃ Η ·Η H H٢ Η Н CH₃ CH₃ H Η CH₃ a) Diastereomers b) Enantiomers c) Constitutional isomers d) Homomers Choose the correct Newman projection for 3-methylpentane. 1 1 6. a)

7.	The absolute configuration of the following molecule is a) R b) P c) M d) None of the above	1	1
	a) R b) P c) M d) None of the above		
8.	The two conformations given below are CI CI CI CI CI CI CI CI CI CI	1	1
9.	The energy required to rotate n-butane molecule about the carbon- carbon bond is called a) Rotational b) Torsional c) Angle d) Diaxial	1	1
10.	Which of the following molecules is aromatic? a) (c)	1	1

Q. No.	SECTION B (10 x 1 = 10 marks)	CO	KL
	Fill in the blanks	2	2
11.		2	2
	In the above compound, the lone pair on is involved in the aromatic sextet.		
12.	In asymmetric synthesis, the reaction should pass through a transition state.	2	2
13.	A product like transition state leads to type of reaction.	2	2
14.	According to Baeyer's strain theory, all cyclic molecules are	2	2
15.	Cumulenes with number of double bonds show optical isomerism.	2	2

/2/


	Answer in a line or two.	2	2
16.	Differentiate between racemic mixture and meso compound.	2	2
17.	Give the eclipsed Sawhorse form of propane.	2	2
18.	What is secondary isotope effect?	2	2
19.	Write the structure of 12-annulene.	2	2
20.	Give the most stable conformer of cis-1,3-dimethylcyclohexane.	2	2

Q. No.	SECTION C (4 x 6 = 24 marks)	CO	KL
	Answer any four questions.		
21.	Illustrate the difference between point, axial, planar and helical	3	3
	chirality with suitable examples.		
22.	Predict the stereochemistry of Evans-Aldol reaction.	3	3
23.	Demonstrate the conformational behaviour of piperidine.	3	3
24.	Derive the Hammett equation and explain the significance of the	3	3
	reaction and substituent constants.		
25.	Using suitable examples, explain the difference between	3	3
	stereospecific and stereoselective reactions.		

Q. No.	SECTION D (4 x 8 = 32 marks)	CO	KL
	Answer any four questions.		
26.	Assign R or S nomenclature to the following compounds. HOOC HOOC H_{3C} C=C=C H Cl	4	4
	$H \rightarrow OH$ $H \rightarrow OH$ H		
27.	 a) Indicate whether the following compounds have Re or Si nomenclature. (4) H H	4	4
	the formation of diastereomers? (4)		

28.	Analyse and predict the rate of chromic acid oxidation of axial and equatorial cyclohexanols.	4	4
29.	Outline the importance of cross-over experiments and isotopic labeling in determining reaction mechanisms. Give suitable examples.	4	4
30.	Examine the stability and stereochemical aspects of cis and trans 1,2-, 1,3- and 1,4-disubstituted cyclohexanes.	4	4

Q. No.	SECTION E (2 x 12 = 24 marks)	CO	KL
	Answer the following questions.		
31.	a) Convert the following Fischer projection into Newmann and Sawhorse projection. (6) COOH	5	5
	HBr		
	Br ————H		
	ĊOOH		
	b) Analyse the thermodynamic and kinetic control of addition reactions with respect to 1,2- and 1,4-addition. (6)		
	(OR)		
32.	a) Predict the products of the reaction given below and explain the stereochemistry. (6) CH ₃		
	$\begin{array}{c} & t-\text{Bu-O-OH} \\ & & \text{Ti}(\text{O-}i-\text{Pr})_4 \\ & & & & & \\ \end{array}$		
	(R, R)-(+)DET CH ₃ CH ₃		
	b) Identify the chiral centres in the following compounds. (6)		

